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Abstract

In our work in this paper, we define intuitionistic fuzzy complex subgroups with respect to t-norm T and s-norm S and
investigate some properties of them in detail. Next, we obtain some results about them and give some relationships
between them. Later, we introduce the inverse, composition, intersection and normality of them and we prove some
basic new results and present some properties of them such that the inverse and composition of two intuitionistic fuzzy
complex subgroups with respect to t-norm T and s-norm S will be intuitionistic complex fuzzy subgroups with respect
to t-norm T and s-norm S. Also we consider and give some characterizations of them. Finally, we discuss them under
group homomorphisms and investigate some related properties such that the image and preimage of two intuitionistic
fuzzy complex subgroups with respect to t-norm T and s-norm S will be intuitionistic complex fuzzy subgroups with
respect to t-norm T and s-norm S.

Keywords: Group theory, Theoty of fuzzy sets, Intuitionistic fuzzy complex groups, Norms, Homomorphisms,
Intersection.

1 | Introduction

@@ In mathematics, fuzzy sets (uncertain sets) are somewhat like sets whose elements have degrees of
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scientific field because it deals with degree of membership and non-membership in complex plane.

They also initiated the concept of complex intuitionistic fuzzy relation and developed fundamental
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operation of complex IFSs in [10]. Al-Husban and Salleh [11] introduced the concept of complex fuzzy
subgroups in 2016. Ali and Tamir [12] innovated the notion complex intuitionistic fuzzy classes in 2016.
The author by using norms, investigated some properties of fuzzy algebraic structures [13—15]. In Section
2, we recall the elementary notions which will be needed in the sequel. Next, in Section 3, we define
intuitionistic fuzzy complex subgroups with respect to t-norm T and t-conorm S (in shott, IJFCN(G)) of G
and investigate properties of them as Propositions 2 and 3. Later, in Section 4, we introduce composition,
inverse and intersection of two elements A, BEIFCN(G) and we prove that AoBelFCN(G) and
ANBEIFCN(G) under some conditions. Also in Section 5, we define normality of two elements
A,BEIFCN(G) and discuss some properties of them. Finally, in Section 6, we investigate image and pre

image of them under group homomorphisms.

2 | Preliminaries

We recall first the elementary notions which play a key role for our further analysis. This section contains
some basic definitions and preliminary results which will be needed in the sequel. For details we refer to
12,7,9], [16-21].

Definition 1. A group is a non-empty set G on which there is a binary operation (a, b) as ab such that

I. If a and b belong to G then ab is also in G (closure).
11. a(bc)=(ab)c for all a, b, ¢ €G (associativity).
III. There is an element e;€G such that aeg=ega=a for all aeG (identity).
IV. If a €G, then there is an element a” €G such that aa”=a”a=e (inverse).

One can easily check that this implies the unicity of the identity and of the inverse. A group G is called
abelian if the binary operation is commutative, i.e., ab = ba for all a,b €G.

Remark 1: There are two standard notations for the binary group operation: either the additive notation,
thatis (a, b)=a+b in which case the identity is denoted by 0, ot the multiplicative notation, thatis (a, b)=ab
for which the identity is denoted by e.

Definition 2. Let G be an arbitrary group with a multiplicative binary operation and identity e. A fuzzy

subset of G, we mean a function from Ginto [0,1].

Definition 3. For sets X, Yand Z, f=(f;, ;) :X—YxZ is called a complex mapping if £;2X—Yand £, X -2
are mappings.

Definition 4. Let X' be a nonempty set. A complex mapping A=(14, 94) X—=[0,1]x[0,1]is called an IFS
in Xif g+ 94 <1 whete the mappings w4 :X—[0,1] and 9, :X—[0,1] denote the degree of membership
(namely z24(x)) and the degree of non-membership (namely 94(x)) for each xeX'to A, respectively. In
particular 0_and 1. denote the intuitionistic fuzzy empty set and intuitionistic fuzzy whole set in X defined
by 0.(x) = (0,1) and 1_(x)=(0,1), respectively. We will denote the set of all ZF5sin X as IF5(X).

Definition 5. Let X'be a nonempty set and let A=(u,, 94)and A=(ug ) be [FSsin X. Then

1. AcCB lffIUA _<1UBZ.1'1C1 ‘9A > ‘93’
II. A=B iff AcBand BC A.

Definition 6. Let X be a nonempty set. A complex fuzzy set A on X is an object having the form A = {(x,
Ha(x))x € X}, where 4 denotes the degree of membership function that assigns each element x € X a
complex number z,4(x) lies within the unit circle in the complex plane. We shall assume that is u4(x) will

be represented by rA(X)eiWA(X) where 7= 17—3, and r: X — [01] and w: X — [02r]. Note that by setting



w(x) = 0 in the definition above, we return back to the traditional fuzzy subset. Let u;=r;e"?, and
Ho=1re"? be two complex numbers lie within the unit circle in the complex plane. By u; < 1,5, we mean

r]Srzand W1_<W2.

Definition 7. A complex IFS A, defined on a universe of discourse U, is characterized by membership
and non-membership functions p4(x) and y 4(x), respectively, that assign any element x € Ua complex-
valued grade of both membership and non-membership in S. By definition, the values of u4(x) and
74(x) and their sum may receive all lying within the unit circle in the complex plane, and ate on the form
ta(x) =r, (e Y for membership function in § and y,(x)=k (0e™7AY for non-membership
function in A, where 7= 17—3, each of r4(x) and k4(x) are real-valued and both belong to the interval [(]]
such that 0 < ry(x)+ k4(x)< 1and iw, ,(x) and iw,, (v are real-valued.

Definition 8. A t-norm T is a function 7:/0, 1]x/0, 1]—[0, 1] having the following four properties:

1. T{x,1)=x (neutral clement).
II. T(x, y)< T(x, 2)if y < z (monotonicity).
III.  Ttx, y)= T(y, x) (commutativity).

V. T(x1(y, z))= T(I(x, y), 2) (associativity).

Forallx, y, z€ [0, 1]

It is clear that if x;>x,and y;2y,, then T( x;, y1)=> T( x5 y2).

Example 1.

1. Standard intersection T-norm 7,,,(x, y):min{x, y}

II. Bounded sum T-norm Tp(x, y):max{O, X+ y- ]}.
I Algebraic product T-norm T,,(x, y)= xy-

IV. Drastic T-norm.

y, if x=1,
Tp(xy)=1Xx, if y=1,
0, otherwise.

V. Nilpotent minimum T-norm.

Tui(y)= {rgmle yho iyl

, otherwise.
VI. Hamacher product T-norm.
0, if x=y=0,
_ X
Th, (xy)= Y , otherwise.
X+y-Xy

The drastic t-norm is the pointwise smallest t-norm and the minimum is the pointwise largest t-norm:

Tp(xy)< Tx, y)< T,(x, y) for all x, ye/0, 1].

Recall that t-norm T will be idempotent if for all x € /0,1], we have T{x, x)=x.

Lemma 1. Let T be a t-norm. Then

T(T(x, y), T(w, 2))= T(T(x, w), T(y, 2)), for allx, y, w, z €[0, 1].
Definition 9. An s-norm S is a function 5:/0, 1/x/0, 1]—/[0, 1]having the following four properties:

1. S(x, 0)=x.
II. S5(x, y)<S(x, z) ify< z

{17
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III. S(x, y)=5(y, x).
IV. Sx, S(y, z))=5(5(x, y), z).

For all x, y, ze[0,1].
We say that S is idempotent if for all xe/0,1], 5(x, x) = x.

Example 2. The basic S-norms are

Sm(x, y) = max{x, y},
Sp(x, y) = min{l, x +y},

and

Sp(x, y)= x+y-xy,
For all x, y€/0,1].

S,y is standard union, Sy, is bounded sum, S, is algebraic sum.
Lemma 2. Let S be a s-norm. Then S/S(x, v), S(w, Z)/: S(S(x, w), S(y, Z)), for all x, y, w, ze/0,1].
Proposition 1. Let G be a group. Let / be a non-empty subset of G. The following are equivalent:

1. H is a subgroup of G.
II.  x, yeH implies Xy'] €H for all x, y.

Definition 9. Let H be subgroup of group G. Then we say that //is normal subgroup of Gif for all g €G
and h € H, we have that ghg”?eH.

Definition 10. Let G and H be any two groups and f:G—H be a function. Then f is called a
homomorphism if fxy)=fx)f(y) for all x, y €G.

3 | Intuitionistic Fuzzy Complex Subgroups with Respect to Norms (t-
Norm T and s-Norm S)

Definition 11. Let Gbe a group such that ¢4 =r e™4 and 9, = rye'a be two complex fuzzy sets on G,
An A=(u1,4, 94)€lFS(G) is said to be intuitionistic complex fuzzy subgroup with respect to norms( t-norm
T and s-norm S) (in short, IFCN(G)) of G if

L RA(C)2T(r4(0, £4(9).

II. rA(X'J)er(X).

111 WA(Xy)zmjn{wA(x), WA(y)}.
IV. Wa(x7)2wa(x).

V. Ra0)sS(r4(0), £a(9)-

VL Ry(x7)<za(%).

VIL WA(Xy)SmaX[WA(X), WA(y)}.
VIIL Wa(x7) swa4(0).

For all x, y€eG.



Example 3. Let G = [0, a, b, ¢/ be the Klein’s group. Every element is its own inverse, and the product
of any two distinct non-identity elements is the remaining non-identity element. Thus the Klein 4-group ”’-
admits the elegant presentation a° = & = ¢?= abc = 0. Define r, : G — [0, 1] by

1 Fuzzy. Exi. Appl

(075, ifx=a,
10.65, ifx=b,

ra(x)= { 0.55, ifx=c 96
l0.45, ifx =0,

and wy : G = [0, 2] by

(0.457, ifx=a,
10.457, ifx=Db,
wA()= 10557, ifx=c,

L0.657, if x = 0.
£y :G— [0 1]by

(0.25, ifx=a,
; j 0.35, if x =b,
ra(x)= ) 0.45, ifx=c,

1
{0.55, ifx=0,

and w, - G — [0, 2r] by

(0.557, ifx=a,
~|0.55m, ifx=b,
WA= <I 0.457, ifx=c,
0357, if x = 0.

Let T(a, b) = Ty(a, b) =ab and S(a, b) = S,(a, b) = a+b-ab for all a,b€[0,1] then A= (i, 94)€
IFCN(G).

Proposition 2. Let A = (114, 94)€IFCN(G) and Tand Sbe idempotent. Then forall x € G and n > 1,

Rasuli |J. Fuzzy. Ext. Appl. 4(2) (2023) 92-114

1. A(e) 2 Ax).
1L A(Xx")2A(X).
L. A(x)=AKX7).

Proof: As u, =rye™4 € ICEN(G) so

I

ra(e) =ra(x 1) > T(ra(x), ta(x ™)) = T(ra(X), ra(x)) = ra(x),
and
wa(e) = wa(xx) > minfw o (x),wa(x ™)} > minfw o (x), Wa(X)} = Wa(X),
and then
ua(e) =ra(e)e™a® >, (x)e™al) =y (x). (@
Also
wa(e) = WaxxT) < max{wa (x), wa(x)} < max{ws(x), Wa(x)} = wa(x),
and so
9a(e) = 1y (e)e™A® < 1, (x)ei WA = 9, (x). (b)

Now from Egs. (a) and (b) we obtain that
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Ale) = (nale), da(e)) 2 (Ha(X), Ia(x)) = A(X).

II.
()
raA(x") =ralxx.x f2T( rA(X),ra(X),...ro(X))=1A(X),
=) n
and
( )
WA(X™)=wa [ xX...x | >min{ WAX),WA(X),.. WA (X)}=w 4 (X),
=) n
and so
HAGX™)= 1A (xM)eWAalN > 1) (x)eVat) = 11, (x).
Also
()
rA(X™)=17% [ xx.x| <S{rA(X),ra(X), ..., Fa(X)}=ra(X),
=) n
and
( \
WA (X")= Wy I x.x...x}l <max{ Wz (x),Wa(X),..., W o (X)}=Wa(x),
and

S (KM= ra(xMe AT <y (x)e A = 3, (0).

Now using Egs. (a) and (b) give us
A= (a(c™),84(xM)2 (a9, 94 ()= AR).

1. As
ra()= ra(x?) 2 ra(x)2ra®),
and 50 1,4(x)=1,4(x7) and as
wa()=wa(x?) " 2 wa(x1)2 wa).
Then w(x)=wa(x7). Then
pa(x)=ra ()™= rp (e vat) = s ().
Now
ra()= 1A (1) < (xT)< FA ),
50 74(x) = r4(x!) and as
WA (X)= w’A(x-l)'1 < W (x1)<wax),
9a(x)= ra(x)e ™A = 1y (x)e At = 8, (x).
wa(x)=w4(x7). Then

Thus from Egs. (a) and (b) we give that
AT = (a8 = (Ba(X), 94(9) = AX).

@)

()

@)

SO

(b)



Proposition 3. Let A = (uy, S4)elFCN(G)and T and S be idempotent. Then A(xy)=A(y)if and only
it A(x)=A(e) for all x, yeG.

Proof: As A(xy)=A(y) for all x, y€G'so if we let y=e, then we get that A(x)=A(e).

Conversely, suppose that A(x)=A(e) so from Proposition 2, we get that A(x)2A(y) and A(x)2 A(xy). Then
r4(x)2 ry(p) and ry(x)> ra(xy) and wy(x)> wa(p), walxy). Also £4(x)< F4(y) and £4(x) < F4(xy) and
Wa() < W4(y) and w4 (X) < w4 (xp).

Now

ra(xy)2 T(ra(x), Ta())

> T(ra(y), ra(y))

=1A(y)= rA(x‘lxy)

> T(rA(x), rA(xy))

> T(r AlXy)r A(xy))

=ra(xy),
and then

ra(xy)=ra(y)- @
Also

WA (Xy)> min{w AX), w A(y)}

> min[WA(y), WA(y)} =wa(y)= WA(X'lxy)

> min{wA(x), WA(xy)}

> min[w Alxy)w A(xy)}

=wa(xy),
and then

Waxy)=waly). (b)
Therefore from Egs. (a) and (b) we obtain that

Ha(xy)=TA(Xy)e™A0V= 1, (y)e ™AW = p(y). ©
Also

ra(xy)< S(ra(x), ra(y))

< S(ray)ra(y))

=1 (y)=ra(xxy)

< S(ra (), raxy))

< S(ra(ey) 1A (xy)

=1a(Xy),
Then

ra(xy)= ray)- @
Also

Wa(xy)< max[w’A(x), W’A(y)}

P [P PR

/-
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< max[w’A(x), WA(xy)}

< maX[WA (XY)/WA(XY)}

= wal(xy),
and then

WA(Xy)= Wa(y). ©)
Therefore from Fgs. (d) and () we obtain that

Sa(xy)= ra(xy)e™WaltN=r) (y)e™al) = S (y). ®

Now as Egs. (¢) and (f) we get that
AKy) = (Hay) da(xy)) = (Ha(Y), Yay)) = Aly)-

4 | Composition, Inverse and Intersection of IFCN(G)

Definition 12. Let A=(u,, 94)€IFCN(G) and B=(up 95)€ IFCN(G) such that p4=r,e™4eIFCMG) and
84=rye™4 and up=rze™s and dz=rze™5. We define the composion of A and B as A oBand for all xéG

we have
(A 0 B)X)=((1ta, 84) 0 (1, 95))(X)=(paos (), Sacp(x))=
((r porg)(x)eiWa oW (1, orp)(x)eiWa o We)X),

Such that ry 0 rg :G =0, 1] and wyowp : G — [0, 2] and Fy 0 F5z :G — [0, 1] and w40 wg :G —[0, 27].
Now define

( . _
rp org)(x)= J fig T(rA(a)’ rB(b)), if x=ab,

0, if x#ab,
and
min{w 5 (a),wg(b)}, if x=ab,
(Wa 0 Wp)(x)= | xab
0, if x#ab,
and
or - ESEROLD) 1 x50
0, if x # ab,
and
, . max{w(a),w(b)}, if x=ab,
(WA 0 Wp)(x)= { x2ab
0, if x#ab,
For all xeG.

Proposition 4. Let A7=(u 7, 9,7 )EIFS(G) be the inverse of A=(u,, I4)EIFCN(G) such that for all xeG

- - -1 - - -
AT)=(pa (9, 947 (D=(palx ), vVAKXT)=A(xT).
If T and S be idempotent then A=(u,, 9,)eIFCN(G) if and only if A satisfies the following conditions:

I. ADA o A.
I A= A.

Proof: Let x, y, z € Gwith x = yz and A€lCF N(G). Then



rA(X) =1a(y2) 2 T(ra(y), ra(2)) = (ra 0 1A)(X),
and
WA (X) = Wa(yz) 2 minfw A (y), wa(2)} = (Wa 0 Wp)(X),

then

ba()=TA(x)eMA) > (1) 01,)(x)elWAWAN) = (L A)(X).

Also
rA()=ra(yz) <S(ra(Y), Ta(2)=(th 0 1A)(X),
and
WA(X)= WA (y2)2 min{wa (y), wa(z)|= (Wa 0 WA)X),

then

SA()= ra(x)e™Al) > (1) 0 1) (x)elWAWAN) = (9,40 2)(X).

Thus from Egs. (@) and (b) we get that

A(X) = (pa(X), Fa(X)) 2 (Haoa)(X), Sa0a)(X)) = (A 0 A)(x),
and then ADA oA.

1. As Proposition 2, we have that A7 (x) = A(x) = A(x) for all xéG. Thus A7=A.

Conversely, let A 2 A0 A and AT=A and x, y, z €G with x =yz . Since ADA 0 A so r4(x) > (4 0 r4)(X)

and then

ra(yz) = Ta(x) 2 1p0ra(X) = sup T(ra(y),rp(2)) 2 T(ra(y),ra(2)).

x=ab

wp(X) 2 (W 0 wy)(X) and thus,

WA(YZ2)=WA()Z (Wa 0 W) (9= minfwa(y) we(2)] {wa(y), wa@).

Fu(x) < (F4 0 F4)(x) and then,

rAy2)=rA()<raofa(9= inf S(ra(y), r5(2) <S(ra(y), ra(2)).

W4 (X)<( W4 0 W4)(x)and so

WA(YZ)=WaK)<(Wr0WA) ()= max{wa(y)Wa2)] <[Wa(y), Wa(2)}

As A=A so,

ra(x1)=rat(0)=ra().
ra(x1)=ra T (0=ra ).
WA(X'l): WA (%)= WA (X).
WA(X'1)= Wa ()= Wa(X).

Thus from Egs. (a)-(h), we get that A€IFCN(G).

Corollary 1. Let A=(u,, S4)eIFCN(G) and B=(uup, 95)eIlFCN(G) and G be commutative group. Then

A o BE[FCN(G)if and only if Ao B=Bo A.

@)

(b)

@)

®)

©

@

©
®
©
(b)

/-
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Proof: If A, B, A 0 BEIFCN(G), then from Proposition 4 we get that A7 = A, B! = Band (BoA)? =Bo A.
Now A 0 B= A' 0 B! =(BoA)? =B 0 A. conversely, since A 0 B =B 0 A we have

(AoB)! =(BoA)! =A1 0B =A0B.
Also
(AoB)o(AoB)=Ao(BoA)oB=Ao(AoB)oB=(AoA)o(BoB)CAoB.

Now Proposition 4 gives us that A o BEIFCN(G).

Definition 13. Let A=(uu,, 94)EIFCN(G) and B=(1up, 9p)€ IFCN(G) such that, uy=r e™4 and 9,(x)=
Fae™a and up=rze™sand Ip(x) =Fze"5. define the intersection of A and B as A NBsuch that for all xeG-

(AN B)(x) = ((1a, Sa) N (4, 9p))(X)
=(uan(x), vVANB(x))
=((raNrp)(x)e!™aMB) (1N rp)(x)e!Wan W),

Such that ry Nrg: G — [0, 1] and wyNMwg: G — [0, 271] and FaNrgG— [0 1] and
wa W, 2 G — [0, 2r] define:

(ra Nrp)(X)=T(ra(), ra()),

(Wa Nwp)(X)=min{w 5 (x), wa (X)},

(ra N 1E)(X)=S(ra(x), r5(x)),

(WaN wg)(x)=max{w, (x), Wg (X)},

forall x € G.
Proposition 5. Let A=(1,4, 9,4 )eIFCN(G) and B=(up 93)cIFCN(G). Then ANBeIFCN(G).

Proof: Let A=(i4, 94)EIFCN(G) and B=(up, 95)€ IFCN(G) such that 4= rye™4 and S4(x)=r4 ™4 and

Up=rze™? and 9p(x)= rze™>.

I. Let g7,8,€G. then

(ra N1R)(g182) = T (ra(gi182), rB(8182))

> T (T (ra(g1), ra(g2), T (ra(g1), r8(82)))

=T (T (ra(g1), r8(g1), T (ra(g2), r8(g2))) (Lemma 1)
=T ((raN1B)(g1), (ra NrB)(g2)),

and thus

(ra NTE)(g182) = T ((ra NTB)(g1), (ra N1E)(g2))-
I. If g€G, then

(ra N1p)(EH=T (ra(g™), re(g ™M))=T (ra(g), r5(8)=(ra N rp)(g),
and so (r N rB)(g'])Z(rA Nrg)(g).

III. If g € G, then

(WANWE)(g182)= min {w4(g182), Wwr(g182)!}

> min{min{w 5 (g1),w a(g2)}, min{wg(g1), wg(g2)}}
=min {min {wA(g1),wp(g1)}, min {wg(g2),ws(g2)l}
=min{(w AN wg)(g1), (Wa NWg)(g2)},

and so (Wawp)(g182 = min{(wan wi)(g), (W nwp)(g2)}.



IV. Letg€G,so

(Wanwp)(g 1)=min{w A (g1), wp(g!)}2min{w A(g), wp(8)}=(w sNWE)(8), (/-
and so (WAnWB)(g'IJZ(WAﬂWB)(g), ) Tuzzy, B Appl
102

V. Let g,82€G. then

(ra N 13)(8182)=S (ra(8182), r5(8182))
<3 (5 (ra(g1) 1a(®2), S (1i(81), To(2))

=S (s (ra(g1), 15(81)), S (ralg2), r@(gg)) (Lemma 1)
=S (AN 13)(81), (a Nrp)(82)),
and thus

(AN 1B)(8182)SS((raNIB)(g1), (raNre)(g2)).
V1. If g €G, then

(ra N1)(g™1)=S (ra(g™), rB(g™)<S (ra(g), ra(®))=(ra N r5)(g),
and so (£41 75)(g7) (¢4 N 75)(g).

VIIL. Let g7,8,€G. Then

(WaANWg)(g182) = max {Wa(g182), Wg(g182)}

< max{max{w(g1),W a(g2)}, max{wg(g1),Wg(g2)}}
=max {max {W(g1),Wg(g1)}, max {wWa(g2),Wg(g2)}}
= max{(WaN Wg)(g1), (Wa NW3)(g2)},

and so (W4 5)(g,82) < max{(wan wi)(gy), (W4 Np)(g2))-
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VIII. Letg € G, so

(Wanwp)(g1)=max{wx(g 1), wp(g 1)} < max|wa(g), wa(g)|=(Wanwp)(g),

and so (WAHWB)@']/S(WA/?WB)@).

Then above steps give us that ANBEIFCN(G).

Corollary 2. Let [,={1,2 .., n}1f [A 1‘:(/44/ 94 ) /1€ 1} CIFCN(G).
Then A=/);c; A; EIFCN(G).

5 | Normality of ICFN(G)

Definition 14. Let A=(i4, 9,)€IFCN(G)such that u,=rse™4 and 9,(x)=r,e™A. We say that
A=(uy, 94)is normal if for all x, y€G, we have that A(xyx?) = A(y)which means that r (xyx?) = r,(v)
and w4 (xyx?)=w,(y) and ry(xyx?) =F4(y) and WA(X)/X'] ) =w4(y). We denote by NIFCN(G) the set

of all normal intuitionistic fuzzy complex subgroups with respect to norms (t-norm T and s-norm S).

Proposition 6. Let A=(u,, 94)ENIFCN(G) and B=(ug, 95)eNIFCN(G) such that p,=r e™4 and
9,4(x0) =rse™4 and pz=rze™s and 95(x)= Fze™5. Then ANBENICFN(G).

Proof: As Proposition 5 we have that ANBEIFCN(G). Let x, y, €Gthen



L (4 Nrg)yx™) =Tlealxyx™), ra(xyx™)) = Tlea(y), 15(7)) = (ta N 1)(7).
”’- . (wy N we)xyx? )=min/wA/ny'] /, WB/X)/X'] //:min/WA(y), wg(V)=(wa N wg)(y).
‘ UL (r4( Nrp)ogx) =Saltox™), rptpx)) = SEa(y), 13(7)) = (ta( N 1B)(y).
L Tuzzy. B Appl IV. (W4 N wy)xyxT)=max{w, /ny'] ), WB(X}/X'] //: max{w(v), We(y)}=(W wg)y).

103 Then from above steps, we get that

(A N B)(xyxM)=(nanp(xyx ™), Sanp(xyx1))=(uans(¥), Sanp(¥))=(A N B)(y).
And so ANBENIFCN(G).

Corollary 3. Let I,=(1, 2, .., n}. If A ;=(i, 94, /i€ I,} SNIFCN(G). Then A=(\;, A; ENIFCN(G).

Definition 15. Let A=(114, 94)eNIFCN(G) and B=(up, 95)€IlFCN(G) such that AC B. Then A is called
normal of B, written ALCB, if

L rA(XyX'I)zT(rA(y), I‘B(X)).
0. wy(xyx?)>min{w,(v), we(x)}.

L Fy(xpx?) <S4 (p), £5(3) ).
IV. waxyx)<smax{w4(y), wa(x)}

For all x, y€G.
Proposition 7. If T and S be idempotent and A=(114, 94)eIFCN(G), then ACA.

Proof: Let x, yeGand A=(i1,, 84)EIFCN(G). Then
ra(xyx1)2T (r AGY), T A(x-l))
> T(raGcy), 1a®) = T(T(ra 00, 14 (), 1a %)
=T (T(rA), rAM), 7AW =T(ra®) 1a ()= T, 2K,

and so

rA(xyx'l)z T(rA(y), I'A(X)). 1)

Intuitionistic fuzzy complex subgroups with respect to norms (t,s)

also

WA(xyx'l)Zmin{WA(XY)r WA(X_l)}
=min{w s (xy), w 5 (X)}

> min{min[w A(X), w A(y)},WA(X)}

= min{min{w A (X), WA (X)}, W (y)}

=min{w A (x), wa(y)}

= min{w(y), wa(x)},

Then

wA(xyx'l)Zmin{wA(y), wa(X)}. 2

ra(xyx1)<8 (14 (xy), ra(x1))



<S (S(Y'A(X)r ra(y)), I"A(X)) ”’-
=5 (S(a 00, rA®), 1)
= S(r’A(X), rA(Y)) s
= S(ra(y), Ta()), 104
Now
thus
r’A(xyx'l)s S(rA(y), rA(x)). (3)

W’A(xyx '1)SmaX{WA(XY)/ W’A(X_l)}
< max{w (xy), Wa(x)}

< max{min[w’ A(x), w A(Y)],WA(X)}
= max{min{ws (x), wa ()}, W (y)
=max{w(x), Wa(y)}

= max{wx(y), Wa(x)},

Finally,
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then
wa (xyx)<min{w s (y), wa ()} (4)

Then Egs. (1)-(4) give us that ACA.

Proposition 8. Let A=(uy, 94)ENIFCN(G) and B=(up, 9p)€IFCN(G) such that p,=r,e™4 and

94(W)=r 1™ and ug=rze™s and 94(x)=rze™s. If T and S be idempotent, then ANBLB.
Proof: As Proposition 6 we have that ANBENIFCN(G). Let x, y€G then

(ra ﬂrB)(xyx'l): T((ra(xyx™), rp(xyx™))
= T((raly), rp(xyx™))

> T(rA(y), T(rp(xy), rp(x™))

> T(ra(y), (T (rp(x), rp(y)), r(x)))
=T(ray), T(rg(y), T (rg(x), r3(x))))

=T (I‘A(Y)/ T(rB(y)' rB(X)))
=T (T(rA(y), rB(Y))/ TB(X))
= T((ra Nrp)(y), rp(x)),

and then

(ra Nrp)(xyx)2T((rs Nrp)(y), rp(x))- 5)



Also

: ”’- (WAﬂWB)(ny '1): min{(w o (xyx 1), wg(xyx™1)}

= min{(wa(y), wp(xyx ™)}
I Fuzzy. Ext. Appl Z mln{WA(y), min{WB(Xy), WB(X_l)}}
105 2 min{w 4 (y), min{min{wg(x), wg(y)}, we(x)}}

= min {W AY), min{wB(y), Min{wg(x), WB(X)}}}

=min {w () minfwy(y), ws(0)|}

= min{min{WA(Y)/ WB(Y)}I WB(X)}}
= min{(wNwg)(y), wg(x)},

then

(wanwg)(xyx)2min{(w ANwg)(y), w(x)}. ©)
Now

(fANr) (xyx1)=S((ra (xyx ), rp(xyx 1))

= S((ra(y), ra(xyx™))

< S(I'/A(Y), S(r/B(XY)r r,B(X.l))

< S (raly), S(S(rs(¥), ra(y)), 18(x)))
= S(raly), S(rs(y), S(re(x), 18(x))))

- 5 (raly), S{eaty), )

=5 (S(r(), 155)), 150

=S((ra Nr)(y), r5(X)),
and then

(4 Nr) (xyx)<S((xa Nr)(y), 15(x))- )
As

(V\}AOWB)(xyx'l): min{w » (xyx 1), wg(xyx?)}

= min{w,(y), wp(xyx™)}

> min{w 5 (y), minfwp(xy), wp(x D)}
> min{ws(y), min{minfwp(x), wp(y)}, ws()}}

Intuitionistic fuzzy complex subgroups with respect to norms (t,s)

= min {Wa(y), min{wa(y), min{ws(x), w9}

=min {w () min{w(y), ws(0)|}
= min{m’in{w’A(y), wi(y)}, we(x)}}
= m1n{(wAﬂWB)(y), WB(X)}/

then

(WANWg)(xyx 1) >min{(w s "Wg)(y), Wp(X)}. ®)
Then Egs. (5)-(§) mean that ANBLB.
Proposition 9. Let A=(1,, S4)eIFCN(G) and B=(up 9g)clFCN(G) and C=(us, 9-)eIFCN(G) such that

pa=rqe™a and 9,(X)=r ™ and up=rge™s and 94(x)=rze" and uc=rce™c and 9Ax)=rre™c
Let T and S be idempotent and ACCand BLC. Then ANBCC.



Proof: From Proposition 6 we get that ANBEICFN(G). Now for all x, yeG we get that

(ra Nrp)(xyx?) = T(ra(xyx™?), rp(xyx™)) ”’-

2 T(T(ra(y), re(x)), T(rp(y), rc(x)))

= T(T(rA(y), r5(y)), Ttc(x),1c(x))) T
= T(T(a(y)rp(y)), rc(x)) 106
=T((ra N1E)(Y)rc(x),

and then
(ra Nrp)(xyx)2T((ra N rp)(y)re(x)). ©)

Also

(wa N WB)(xyx'l)z min{wA(xyx'l), WB(xyx'l)]
> min{min{w A (y),wc(x)}, min{wp(y),wc(x)|}
= min[min[w A(y),wB(y)} , min{wc(x),wc(x)}}

= min[min[w A(y),wB(y)} , WC(X)}

min{(w N wg)(y),wc(x)),

then

(WaN wg)(xyx1)=min{(w AN wg)(y),wc(x))- (10)
As

(ranrp)(xyx ™) =S(ra(xyx ), r(xyx™))
<S(S(ra(y), rc(x)),S(r(y), re(x)))
=5(S(ra(y), ra(y)), S(rc(x),re(x)))
:S(S(r,A(Y)/r/B(Y))/ r/C(X))
=S((ranrp)(y)rc(x)),

SO
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(raNrE) (xyx 1) <S((raNeB)(y) re())- (11)
Since

(WaANWR)(xyx1) = max{w (xyx‘l), WB(xyx'l)}

< max{max{w (y),Wc(x)}, max{wg(y),wc(x)}}

= max{max{wx (y),Wp(y)}, max{wc(x),We ()} =max{ max{w(y) wp(y)}, 12

wex)}

= max{(wa NWg)(y),Wc(x)).
then

(WaNWp)(xyx 1) <max{(ws N wp)(y),wc(x))- (13)

Then as Egs. (9)-(13) we get that ANBLCC.

Corollary 4. Let ,=(1, 2, .., n). If [A=(iLy, Sa)/i€I,) CIFCN(G) such that (A =(is, 94)]i€
[n/I—EB:(/UB/ ‘93) Then A:/71'EIHA1' gB:((UB/ ‘93)

6 | Group Homomorphisms and IFCN(G)

Definition 16. lLet A=(uy, I4)eIFCN(G) and B=(up 93)€lFCN(H) such that u,=r,e"4
andSA(X)zr’Aeim?A and ,ngl‘geiwﬁ and 95(x)= I"Beiv‘}B,



Let @ :G—Hbe a group homomorphism. Define:
. {1/ PA)=(@(a), P(ON))=(P(rae™), p(rae™4))=(p(ra)e'* ™M), p(r})e?(V)),

I Fuzzy. Ext. Appl For aH h EHdCﬁIlCZ

107 (ra) :H-[0, 1] as @(r)(h) = supfra(g) | g€ G, ¢(g)=h,
p(wa) :H—[0, 2m] as (w4 )(h) =sup{wa(g) | g€ G, @(g)=h},
o(ra) Ho[0, 1] as (ra)(h) = inf(r (g) | g€ G, @(g)=h,

nd

P(Wa)H—[0, 21] as (W )(h) =inf{iw s (g) | g€ G, ¢(g)=h}.
Also define

@ 1(B)=(p(up), 9 (3p))= (¢ (rpe™®), o (15e™?) )=
(0 ) D), L (rp)eie" o)),
such that for all geG:
@ (rp) :G—[0, 1] as ¢ (rp)(8) =rp(((g)),
@™ (rg) :G—[0, 1] as 9™ (15)(g) =15(¢(8)),
@ (wp) :G—[0,21] as ™ (Wg)(g) =wg(9(g)),
¢ (Wp) :G—[0,21] as @7l (Wp)(8)=Wp(¢(g)).

Proposition 10. Let A=(u,4, 94)€IFCN(G) and H be a group. Suppose that ¢ : G — H is a group
homomorphism. Then @(A)eIFCN(H).

Proof: Let @(A)=(p(114), gD(SA)):/ga(rA)ejWWA)), gp(r;,)er’(W?l))) and h;, hyeH and g, g,€Gsuch that
@(g;) = h; and @(g,) = h,. Then

(ra)(hihy)=supfra(gig2) | g1= @(h1), g2 =p(hy)}

>sup(T(ra(g1), rA(g2) | g1=p(h1), g2 = p(hy)}

=T(sup{ra(gi) | g1 =p(h1)},supira(go) | g2 =¢p(ho)})

=T(p(ra)(hy), @(ra)(hy)),

and so

() (hho)>T(p(r A)(Ry), p(ra)(hy)). (14
Let geGand h€H such that ¢(g)=h. Then

@(ra)(hh)=supira(g™?) g™ €G, (g ?)=h"}

> sup{rA(g) | g‘1 eG,(p‘l(g):h‘l}

= sup{rA(g) | g€G, ¢(g) = h}
= @(rA)(h),

and then

@(ra)(h)z(ra)(h). (15)
Let b], bzGHand g], gzeGWIth @(g]) :h] and ¢((g'2) :hz. Then

Intuitionistic fuzzy complex subgroups with respect to norms (t,s)

p(wa)(hihy)=sup{wa(g182) | 1= p(h1), g2 =p(hy)}
>sup{min{w 5 (g1),wa(g2)} | g1=¢(h1), g2 = p(hy)}

= min{sup{w(g1) | g1=¢(hq)},sup{w A(g2) Ig2 =@ (hy)}}
= min{p(w a)(hy), e(wa)(hy)},

and so

(W) (hihp)=min{p(w 4)(hy), (W A)(ho)}. (16)



Let geGand heH such that ¢(g)=h. Then

{17

p(wa)(hH=supfwa(g?) gt €G, o(gt)=h"}

> sup{wa(g) | g7 €Go™(g)=h") P g P
= sup{wa(g) | g€G, ¢(g) = hi= p(wa)(h),

then 108
P(Wa)(hihy)>min{e(w 4)(hy), @(wa)(hy)}. (17)

et hy, hyeHand g5, 2,6Gwith ¢(g;) = hy and @(g2) = h. Then
@(ra)(hihy)=inf{ra(g182) | 1= @(h1), g2 =p(hy)}
< inf{T(ra(g1), 1a(g2) | g1=p(h1), g2 = @(hy)}
=S(inf{ra(g1) | g1 =p(h1)}inf{r'a(gy) g2 =p(ho)})
=S(p(ra)(hy), o(ra)(h2)),

then

@(W a)(hihy)>min{p(wa)(hy), p(wa)(ho)}. (18)
Let b], szHand 81 ngGWIth @((g']) :h] and @((g'z) :hz. Then

@(ra)(hihy)=inf{ra(g182) | g1= @(h1), g2 =p(hy)}
< inf{T(ra(g1), Ta(82) | 81=¢(h1), g2 = p(ho)}
=S(inf{ra(g1) | g1 =p(h1)}inf{r'a(gy) g2 =@(ha)})
=S(p(ra)(hy), (1) (hy)),

and so

P(W ) (hihy)>min{e(w 4)(hy), @(wa)(hy)}. (19)
Let eGand heH such that ¢(g)=h. Then

@(rp)(hM)=infra(g™) 187 €G, p(g)=h")
<inf{ra(g) | g €G,9*(g)=h"}
=inf{ra(g) | g€G, ¢(g) = h}
=@(ra)(h),
and then

@(ra)(h)<p(ra)(h). (20)

Let b], szHaﬂd 81 gzé_G with @((g']) :h] and ¢(g'2) :hz. Then
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P(Wa)(hihy)=inf{wa(g182) | 81= @ (h1), g2 =p(hy)}
< inf{max{w(g1),wa(g2)} | g1=¢(h1), g2 = @(hy)}
= max{inf{ws(g1) | g1=p(h1)},inf{W(g>) | g2 =p(hp)}}
= max{@(wW)(hy), (Wa)(ho)},
and so

@(Wa)(hihp)<max{p(wa)(hy), (W a)(hy)}. 1)

Let geGand heH such that ¢(g)=h. Then

e(Wa)(h)=infiw (g ) g7 €G, p(g™)=h")
<inf{wa(g) | g* €G,o*(g)=h"}

= inf{wa(g) | g€G, ¢(g) =h}

=pWa)h),

then

@(Wa)(h)<p(WA)(h). (22)
Therefore from Egs. (14)-(22) we get that p(A)EICFEN(H).



Proposition 11. Let A be a group and B=(up Sp)elFCN(H) and ¢ :G —H is a group homomorphism.

Then ¢”( B eIFCMG).
1.

ki) B S Proof: Let B=(uup, 95)eIFCN(H) such that uz=rze™s and 94(x)=rfze™5 and ¢'](B):<¢'] (rB)e@_](WB) ),

109 ot et (98) )). Let g,,8,€G. Then

¢ (rp)(g182) = re(@(8182))
= rp(P(81)¢(82)) 23
> T(rg(p(g1)), rB(P(82)))

=T(p (rp)(g1), ¢ (rB)(g2)),
and so p7(1)(g:82) 2T (¢ (rp)(g)), ¢ (rp)(g2).

¢ (15)(8182)=T5(9(8182))

< <T(p(@(81), 15(9(82)))

g =T (15)(81), ¢ (1B)(82)),

[=]

g and so 9 (£)(g:182) s 9 (£9)(g1), 9 (£5)(g2))-

g ¢ (Wp)(8182) = W(9(8182))

g = wp(P(81)¢p(g2)) 5

4 > minfwp(¢(g1), wi(9(82))}

g = min{p™ (Wp)(g1), 97 (Wp)(82))

E and so ™ (w)(g182) 2minfp™(wy)(g), g™ (wp)(g2).

o

E @ (i) (8, 2,) = Wi (@2, 8,)

E‘ = wi(@(g)@(gy)) o

% < maz{wp ((p(gl)) , W ((p(gz)) } )

Z = max{e™ (W) (g, ). @7 (W) (g,))

:g so p( Wp)(g182) <max o ( wg)(g1), P W) (g2) /-

z

. o rn)(g)=rs (0(57)) =r(e™ &) 218(0(®) =0 (ru)(e), @)
o )(8)=rs (0(2)) =ralo @) <ri(0(®) =0 (0)(®) o8
¢ (wp)(g!)=wp (cp(g‘l)) =wp(9(g))2wp(9(g))=9 (Wp)(g), (29)
@l(wWp)(g) =wp (<p(g -1)) =w5(9(®))<wp(9(®))= ¢ (Wp)(®). (30)

Let g€G.

Thus Egs. (23)-(30) give us that ¢ (B)EICEN(G).

Proposition 12. Let A=(u, 94)eNIFCN(G) and H be a group. Suppose that p:G—H is a
homomorphism. Then @(A)eNIFCN(H).



Proof: Using Proposition 10, we give that ¢(A)elFCN(H). Let x, yeH such that ¢(u)=x and ¢(w)=y with

u, weG. Then

(p(rA(xyx'l))zsup{rA(w) | weG, p(w)= xyx‘l}

=sup{ra(w) | weG, p(w)=p(we(w)p(u™)}
=supfr,(w) | w € G, p(w) = p(uwu™)}
=sup{rp(uwul) |w € G, (p(uwu'l)zy}
=supfr(w) | w € G, p(w)=y}

=(ra(y)),

SO @ﬁA/XYX']j/:§0ﬁA()’)}

(p(wA(xyx‘l)):sup{wA(w) | weG, p(w)= xyx‘l}
=sup{w (W) | WEG, p(w)=p(u)p(w)p(u™)}

=sup{wa(w) | w € G, p(w) = p(uwu™)}
=sup{w 5 (uwu™l) |w € G, p(uwu )=y}
=sup{w(w) |w € G, p(w)=y}
=p(Wa(y)),

then gp/wA(xyx'I// :gu(wA (y)/

Pralxyx™))=inf{ra(w) | weG, p(w)= xyx}

=inf{ry (w) | WeG, p(w)=p(u)p(w)p(u™)}
=inf{ry(w) | w € G, (w) = p(uwu ™)}
=inf{ry(uwul) |w € G, p(uwu )=y}
=inf{ry (w) | w € G, p(w)=y}
=p(ra(y)),

then (71 Cox"))=p(r10)).

(p(w’A(xyx‘l)):inf{WA(w) | weG, p(w)= xyx'l}

=inf{w (W) | WeG, p(w)=p(u)p(w)p(u™)}
=inf{wW(w) | w € G, p(w) = p(uwu™)}
=inf{w s (uwul) |w € G, p(uwu )=y}
=infilws(w) | w € G, p(w)=y}

=p(WA(Y)),

then (1, (x?)) = Wa())-

Thus for all x, yeH and from Egs. (37)-(34) we get that

@A) xyx ) =(@(ua)xyx™), (34)(xyx ™))

=(¢p(r A)(xyx'1))ei(P(WA)(XyX_1), () (xyx! )ei@(W’AXXYX'l))

=((ra)(y)e PMAD), (ry)(y)e PWaW)

=p(A)(y),
Then ¢ (A)ENICEN(H).

Proposition 13. Let H be a commutative group and B=(up, 95)cNIFCN(H). If ¢ :G —Hbe a group

homomorphism, then ¢ (B)eNIFCN(G).

Proof: From Proposition 11, we get that ¢ 1(B)EIFCN(G). Let x, y€G then

1)

(32)

33)

34

/-
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@™ (rp) (xyx™)=rp(@(xyx™))
]| | =rp(@()P(Y)P(x™))
| =1p(@()P(y)p™ (X)) (35)
I Fuzzy. Ext. Appl ZFB((P(Y))
= (rp)(y),
111 and thus @7 (I‘B)(X)/X 'Z) =l (rp)(y).
¢ (we)(xyx™) = wa(p(xyx™))
=w(@()Py)P(x™))
=wa (@) (y)e™ (X)) (36)
=wg(Q(y))
=@ (wg)(y),
so @ (wp) (xx?) =g (wp)(»).

@ (1) (xyx ) = r(@(xyx™))

=r5(@()Q(y)p(x™))

= 15(e(X¥)(y)p™ (%)) (37)
=135(¢(y))

=@ (r)(y),

then go'] (Fg) (xyx']) :¢'](f B ().

¢ (Wp)(xyx ) = wp(@(xyx™))
=Wr(@(P(y)p(x ™)
= Wa(@()P(y)e™ () (38)
= wg(@(y))
=™ (Wp)(y)-
thus (WB)(XyX']) =@ (Wwp)(p). Therefore Egs. (35)-(38) give us that

@ (1) (xyx ) = r(@(xyx™))
=rp(@()P(yY)P(x™))
= 13(@(¥)(y)p™ (%))
= r(¢(y))
= (1B)(y),
Thus ¢ (B)ENIFCN(G).

Intuitionistic fuzzy complex subgroups with respect to norms (t,s)

Proposition 14. Let A=(u,, 94)eIFCN(G) and B=(115 95)elFCN(G) such that ALB.
If ¢ :G—H s a group homomorphism, then ¢(A)Cp(B).

Proof: Let A=(1u4, 94)EIFCN(G) and B=(i5, 95)€IFCN(G) such that s =r,e™4 and 8,4(x)=r,e™4 and

Up=rpe™s and 9p(x) = Fze’ wB, Using Proposition 10. we will have that

PA)=(P(A), P(34)=((r4)e™ ™), @(r)e'(Va)))eICEN(H),
And

@(B)=(@(up), P(Ip))=(p(rp)e *™®), p(xp)e!*(p)))e ICEN(H).

Let x, yeH and u, veG'then



P(ra)(xyx™)=sup(ra(z) | zeG, p(z)=xyx} ”’-

=supfrs(uvu?) | u, veG, ¢(u) x, ¢(v)=y}

>sup{T(rA(v), rg(u)) | ¢(u) x, (v)=y} (39) B
=T(sup{ra(v) | y=¢(v)},sup{rg(u) | x=@(u)}) 112
=T((ra)(y), ¢(rp)(x)),

and so (1, )/ny-z )2T / o)), p(r B)(X)/-

P(w A)(xyx)=sup{w A (2) | z€G, @(2)=xyx}

=sup{w 5 (uvu?) | u, veG, @(u) x, ¢(v)=y}

>sup{min{w (v), wg(u)} | p(u) x, ¢(v)=y} (40)
=min{sup{w(v) | y=¢(v)},sup{wg(u) | x=p(u)}}

=min{p(w)(y), ¢(wg)(X)},

and so @(w, )/ny'] )21171'11/{0( wa)(y), p(we)x)},

(ra)(xyx)=sup(ra(2) | z€G, ¢(z)=xyx?}
:inf{r’A(uvu'l) | u, veG, o(u) x, p(v)=y}
<inf{S(r’ (v), rp(w)) | (u) x, (v)=y} (1)
=S(inf{r'a (v) | y=¢(v)}inf{rj(u) | x=¢(u)})
=5(@(ra)(y), (rB)(X)),
thus @(r.4)(xyx )<Slpra)(y), @)x).

(p(w’A)(xyx‘l):inf{w’A(z) | z€G, (p(z):xyx‘l}

=inf{w s (uvu™) | u, veG, @(u) x, p(v)=y}

<inf{max{wx (v), wp(W} | ¢(u) x, ¢(v)=y} “42)
=max{inf{w x (v) | y=¢(v)}, inf{wg(u) | x=@(u)}}

= max{p(Wa)(y), (Wg)(x)},

and so p(Wy )/xyx'] /_<max/¢( Wa)(v), p(Wg)(x)}.
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Thus using Egs. (39)-(42) we will have that ¢(A)Cp(B).
Proposition 15. Let A=(114, 94)eIFCN(H) and B=(up, 93)eIFCN(H) such that ACB.
If ¢ :G—H s a group homomorphism, then @™ (A)p™ (B).

Proof: Let A=(1y, S4)EIFCN(H) and B=(115 S3)eIFCN(H) such that u,=r,e™4 and 9,(X) =, e

and pg=rze™# and 9y (x)= r];,ei";B. Using Proposition 11. we will have that

P A)=(97 (1a), 97 (94))= (@ (ra)e™ ), @7 (ry)e?” 4)) EICEN(G).
And

o1 B)=(97 (1), 97 (99))= (7 (rp)e™® D), ¢ (1p)e?”9))) € ICEN(G).
Let x, y €G, then
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@H(ra)(xyx) = ra(e(xyx™))
=1 A (PP (V)P (x™))
= AP ()P (%)) (43)
> T(ra(@(y)), rp(@(x)))
=T(@(ra)(y), 9™ (r) (X)),
Then ¢7(r,)(xyx?)2T(9(r)(), ¢ (rp)(N).
@ (W) (xyxT) = walp(xyx™))
=wA(@)Py)p(x™))
=wA(@()P(y)P™ (x) (44)
> min{w 4 (¢(y)), wg(@())}
=min{p (W A)(y), ¢ (Wp)(X)),
thus @7 (w,) (xyx?) 2minfp (wa)(), ¢ (wg) ().

() xyx ™) =ra(@(xyx™))
=rA (@) (PKx™))
=1 (@()P(Y)p™ (X)) 45)
<S(ra(e(y)), re(e(x)))
=S(@™ (rA)(y), ¢ (1) (X)),
so @ (£) (xyx ) s () (), ¢ (£5)(X).

@1 (Wa) (xyx)=w a(@(xyx1))

=WA(@eXey)e(x™))

=WA(@X)Py)e™ (X)) (46)
<max{w (¢(y)), wp(@())}

= max{p (Wa)(y), ¢ (Wp)(X)},

thus ¢7(w,4) (xyx!) < max{e?(w 1) (), ¢ (Wp()].

Thus Fgs. (43)-(46) give us that ¢ (A)Cp™ (B).

7 | Conclusion and Open Problem

In this study, intuitionistic fuzzy complex subgroups with respect to t-norm T and s-norm sare defined
and investigated some properties of them. Later, the inverse, composition, intersection and normality of
them are introduced and we proved some basic new results and present some properties of them. Now
one can investigate intuitionistic fuzzy complex submodules with respect to t-norm T and s-norm S as we

did and this can be an open problem. We would like to thank the reviewers for carefully reading the
manuscript and making several helpful comments to increase the quality of the paper.
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