Paper Type: Research Paper

Intuitionistic Fuzzy Complex Subgroups with Respect to Norms (T,S)

Rasul Rasuli* ${ }^{\text {(iD }}$
Department of Mathematics, Payame Noor University (PNU), Tehran, Iran; rasulirasul@yahoo.com.
Citation:

Rasuli, R. (2023). Intuitionistic fuzzy complex subgroups with respect to norms (T,S). Journal of fuzzy extension and applications, 4(2), 92-114.

Received: 09/01/2023
Reviewed: 12/02/2023
Revised: 16/04/2023
Accepted: 21/05/2021

Abstract

In our work in this paper, we define intuitionistic fuzzy complex subgroups with respect to t -norm T and s -norm S and investigate some properties of them in detail. Next, we obtain some results about them and give some relationships between them. Later, we introduce the inverse, composition, intersection and normality of them and we prove some basic new results and present some properties of them such that the inverse and composition of two intuitionistic fuzzy complex subgroups with respect to t-norm T and s-norm S will be intuitionistic complex fuzzy subgroups with respect to t-norm T and s-norm S . Also we consider and give some characterizations of them. Finally, we discuss them under group homomorphisms and investigate some related properties such that the image and preimage of two intuitionistic fuzzy complex subgroups with respect to t -norm T and s -norm S will be intuitionistic complex fuzzy subgroups with respect to t-norm T and s -norm S .

Keywords: Group theory, Theory of fuzzy sets, Intuitionistic fuzzy complex groups, Norms, Homomorphisms, Intersection.

1 | Introduction

Licensee Journal of Fuzzy Extension and Applications. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY)
license
(http://creativecommons. org/licenses/by/4.0).

In mathematics, fuzzy sets (uncertain sets) are somewhat like sets whose elements have degrees of membership. The concept of fuzzy sets was introduced by Zadeh [1] in 1965. Atanassov [2] innovated the theory of Intuitionistic Fuzzy Sets (IFS) as a powerful extension of classical fuzzy sets. This particular theory has been a great source of inspiration for many mathematicians in various scientific fields like decision making problems [3] and medical diagnosis determination [4]. Roenfeld [5] started the investigation of fuzzy subgroups and found numerous essential properties of this concept. Biswas [6] started the conception of intuitionistic fuzzy subgroups in 1997. A new concept of complex fuzzy sets was presented by Ramot et al. [7]. The extension of fuzzy sets to complex fuzzy sets is comparable to the extension of real numbers to complex numbers. The more development of complex fuzzy sets can be viewed in [8]. Alkouri and Salleh [9] gave the idea of complex intuitionistic fuzzy subsets and enlarge the basic properties of this phenomena. This concept became more effective and useful in scientific field because it deals with degree of membership and non-membership in complex plane. They also initiated the concept of complex intuitionistic fuzzy relation and developed fundamental
operation of complex IFSs in [10]. Al-Husban and Salleh [11] introduced the concept of complex fuzzy subgroups in 2016. Ali and Tamir [12] innovated the notion complex intuitionistic fuzzy classes in 2016. The author by using norms, investigated some properties of fuzzy algebraic structures [13-15]. In Section 2, we recall the elementary notions which will be needed in the sequel. Next, in Section 3, we define intuitionistic fuzzy complex subgroups with respect to t -norm T and t -conorm S (in short, $\operatorname{IFCN}(G)$) of G and investigate properties of them as Propositions 2 and 3. Later, in Section 4, we introduce composition, inverse and intersection of two elements $A, B \in \operatorname{IFCN}(G)$ and we prove that $\operatorname{AoB\in IFCN}(G)$ and $A \cap B \in \operatorname{IFCN}(G)$ under some conditions. Also in Section 5, we define normality of two elements $A, B \in \operatorname{IFCN}(G)$ and discuss some properties of them. Finally, in Section 6, we investigate image and pre image of them under group homomorphisms.

2 | Preliminaries

We recall first the elementary notions which play a key role for our further analysis. This section contains some basic definitions and preliminary results which will be needed in the sequel. For details we refer to [2, 7, 9], [16-21].

Definition 1. A group is a non-empty set G on which there is a binary operation (a, b) as $a b$ such that
I. If a and b belong to G then ab is also in G (closure).
II. $a(b c)=(a b) c$ for all $a, b, c \in G$ (associativity).
III. There is an element $e_{G} \in G$ such that $a e_{G}=e_{G} a=a$ for all $a \in G$ (identity).
IV. If $a \in G$, then there is an element $a^{-1} \in G$ such that $a a^{-1}=a^{-1} a=e_{G}$ (inverse).

One can easily check that this implies the unicity of the identity and of the inverse. A group G is called abelian if the binary operation is commutative, i.e., $a b=b a$ for all $a, b \in G$.

Remark 1: There are two standard notations for the binary group operation: either the additive notation, that is $(a, b)=a+b$ in which case the identity is denoted by 0 , or the multiplicative notation, that is $(a, b)=a b$ for which the identity is denoted by e.

Definition 2. Let G be an arbitrary group with a multiplicative binary operation and identity e. A fuzzy subset of G, we mean a function from G into [0,1].

Definition 3. For sets X, Y and $Z, f=\left(f_{1}, f_{2}\right): X \rightarrow Y \times Z$ is called a complex mapping if $f_{1}: X \rightarrow Y$ and $f_{2}: X \rightarrow Z$ are mappings.

Definition 4. Let X be a nonempty set. A complex mapping $A=\left(\mu_{A}, \vartheta_{A}\right): X \rightarrow[0,1] \times[0,1]$ is called an IFS in X if $\mu_{A}+\vartheta_{A} \leq 1$ where the mappings $\mu_{A}: X \rightarrow[0,1]$ and $\vartheta_{A}: X \rightarrow[0,1]$ denote the degree of membership (namely $\mu_{A}(x)$) and the degree of non-membership (namely $\vartheta_{A}(x)$) for each $x \in X$ to A, respectively. In particular O_{\sim} and 1_{\sim} denote the intuitionistic fuzzy empty set and intuitionistic fuzzy whole set in X defined by $0_{\sim}(x)=(0,1)$ and $1_{\sim}(x)=(0,1)$, respectively. We will denote the set of all IFSS in X as $\operatorname{IFS}(X)$.

Definition 5. Let X be a nonempty set and let $A=\left(\mu_{A}, \vartheta_{A}\right)$ and $A=\left(\mu_{B}, \vartheta_{B}\right)$ be $I F S s$ in X. Then
I. $A \subset B$ iff $\mu_{A} \leq \mu_{B}$ and $\vartheta_{A} \geq \vartheta_{B}$.
II. $A=B$ iff $A \subset B$ and $B \subset A$.

Definition 6. Let X be a nonempty set. A complex fuzzy set A on X is an object having the form $A=\{(x$, $\left.\left.\mu_{A}(x)\right) / x \in X\right\}$, where μ_{A} denotes the degree of membership function that assigns each element $x \in X$ a complex number $\mu_{A}(x)$ lies within the unit circle in the complex plane. We shall assume that is $\mu_{A}(x)$ will be represented by $r_{A(x)} e^{i W_{A}(x)}$ where $i=\sqrt{-1}$, and $r: X \rightarrow[0,1]$ and $w: X \rightarrow[0,2 \pi]$. Note that by setting
$w(x)=0$ in the definition above, we return back to the traditional fuzzy subset. Let $\mu_{1}=r_{1} e^{w_{1}}$, and $\mu_{2}=r_{2} e^{w_{2}}$ be two complex numbers lie within the unit circle in the complex plane. By $\mu_{1} \leq \mu_{2}$, we mean $r_{1} \leq r_{2}$ and $w_{1} \leq w_{2}$.

Definition 7. A complex IFS A, defined on a universe of discourse U, is characterized by membership and non-membership functions $\mu_{A}(x)$ and $\gamma_{A}(x)$, respectively, that assign any element $x \in U$ a complex- valued grade of both membership and non-membership in S. By definition, the values of $\mu_{A}(x)$ and $\gamma_{A}(x)$ and their sum may receive all lying within the unit circle in the complex plane, and are on the form $\mu_{A}(x)=r_{A}(x) e^{i \omega_{\mu_{A}}(x)}$ for membership function in S and $\gamma_{A}(x)=k_{A}(x) e^{i w_{\gamma_{A}}(x)}$ for non-membership function in A, where $i=\sqrt{-1}$, each of $r_{A}(x)$ and $k_{A}(x)$ are real-valued and both belong to the interval $[0,1]$ such that $O \leq r_{A}(x)+k_{A}(x) \leq 1$ and $i w_{\mu_{A}}(x)$ and $i w_{\gamma_{A}(x)}$ are real-valued.

Definition 8. A t-norm T is a function $T:[0,1] \times[0,1] \rightarrow[0,1]$ having the following four properties:
I. $T(x, 1)=x$ (neutral element).
II. $T(x, y) \leq T(x, z)$ if $y \leq z$ (monotonicity).
III. $T(x, y)=T(y, x)$ (commutativity).
IV. $T(x, T(y, z))=T(T(x, y), z)$ (associativity).

For all $x, y, z \in[0,1]$.

It is clear that if $x_{1} \geq x_{2}$ and $y_{1} \geq y_{2}$, then $T\left(x_{1}, y_{1}\right) \geq T\left(x_{2}, y_{2}\right)$.

Example 1.

I. Standard intersection T-norm $T_{m}(x, y)=\min \{x, y\}$
II. Bounded sum T-norm $T_{b}(x, y)=\max \{0, x+y-1\}$.
III. Algebraic product T-norm $T_{p}(x, y)=x y$.
IV. Drastic T-norm.

$$
T_{D}(x, y)=\left\{\begin{array}{lr}
y, & \text { if } x=1 \\
x, & \text { if } y=1 \\
0, & \text { otherwise }
\end{array}\right.
$$

V. Nilpotent minimum T-norm.

$$
\mathrm{T}_{\mathrm{nM}}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{lr}
\min \{\mathrm{x}, \mathrm{y}\}, & \text { if } \mathrm{x}+\mathrm{y}>1 \\
0, & \text { otherwise }
\end{array}\right.
$$

VI. Hamacher product T-norm.

$$
\mathrm{T}_{\mathrm{H}_{0}}(\mathrm{x}, \mathrm{y})=\left\{\begin{array}{lr}
0, & \text { if } \mathrm{x}=\mathrm{y}=0 \\
\frac{x y}{x+y-x y}, & \text { otherwise }
\end{array}\right.
$$

The drastic t -norm is the pointwise smallest t -norm and the minimum is the pointwise largest t -norm: $T_{D}(x, y) \leq T(x, y) \leq T_{m}(x, y)$ for all $x, y \in[0,1]$.

Recall that t -norm T will be idempotent if for all $x \in[0,1]$, we have $T(x, x)=x$.

Lemma 1. Let T be a t-norm. Then

$$
\mathrm{T}(\mathrm{~T}(\mathrm{x}, \mathrm{y}), \mathrm{T}(\mathrm{w}, \mathrm{z}))=\mathrm{T}(\mathrm{~T}(\mathrm{x}, \mathrm{w}), \mathrm{T}(\mathrm{y}, \mathrm{z})), \text { for all } x, \mathrm{y}, \mathrm{w}, \mathrm{z} \in[0,1]
$$

Definition 9. An s-norm S is a function $S:[0,1] \times[0,1] \rightarrow[0,1]$ having the following four properties:
I. $S(x, 0)=x$.
II. $S(x, y) \leq S(x, z)$ if $y \leq z$.
III. $S(x, y)=S(y, x)$.
IV. $S(x, S(y, z))=S(S(x, y), z)$.

For all $x, y, z \in[0,1]$.

We say that S is idempotent if for all $x \in[0,1], S(x, x)=x$.

Example 2. The basic S-norms are

$$
\begin{aligned}
& S_{\mathrm{m}}(\mathrm{x}, \mathrm{y})=\max \{\mathrm{x}, \mathrm{y}\} \\
& \mathrm{S}_{\mathrm{b}}(\mathrm{x}, \mathrm{y})=\min \{1, \mathrm{x}+\mathrm{y}\}
\end{aligned}
$$

and
$S_{p}(x, y)=x+y-x y$,
For all $x, y \in[0,1]$.
S_{m} is standard union, S_{b} is bounded sum, S_{p} is algebraic sum.

Lemma 2. Let S be a s-norm. Then $S(S(x, y), S(w, z))=S(S(x, w), S(y, z))$, for all $x, y, w, z \in[0,1]$.

Proposition 1. Let G be a group. Let H be a non-empty subset of G. The following are equivalent:
I. H is a subgroup of G.
II. $x, y \in H$ implies $x y^{-1} \in H$ for all x, y.

Definition 9. Let H be subgroup of group G. Then we say that H is normal subgroup of G if for all $g \in G$ and $h \in H$, we have that $g h g^{-1} \in H$.

Definition 10. Let G and H be any two groups and $f: G \rightarrow H$ be a function. Then f is called a homomorphism if $f(x y)=f(x) f(y)$ for all $x, y \in G$.

3 | Intuitionistic Fuzzy Complex Subgroups with Respect to Norms (tNorm T and s-Norm S)

Definition 11. Let G be a group such that $\mu_{A}=r_{A} e^{i W_{A}}$ and $\vartheta_{\mathrm{A}}=\mathrm{r}_{\mathrm{A}}^{\prime} \mathrm{e}^{\mathrm{iw}} \mathrm{A}$ be two complex fuzzy sets on G. An $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFS}(G)$ is said to be intuitionistic complex fuzzy subgroup with respect to norms(t-norm T and s-norm S) (in short, $\operatorname{IFCN}(G)$) of G if
I. $R_{A}(x y) \geq T\left(r_{A}(x), r_{A}(y)\right)$.
II. $r_{A}\left(x^{-1}\right) \geq r_{A}(x)$.
III. $W_{A}(x y) \geq \min \left\{w_{A}(x), w_{A}(y)\right\}$.
IV. $W_{A}\left(x^{-1}\right) \geq W_{A}(x)$.
V. $\dot{R}_{A}(x y) \leq S\left(r_{A}^{\prime}(x), r_{A}^{\prime}(y)\right)$.
VI. $\dot{R}_{A}\left(x^{-1}\right) \leq \dot{r}_{A}^{\prime}(x)$.
VII. $\dot{W}_{A}(x y) \leq \max \left\{\dot{W}_{A}(x), \dot{W}_{A}(y)\right\}$.
VIII. $\dot{W}_{A}\left(x^{-1}\right) \leq \dot{W}_{A}(x)$.

For all $x, y \in G$.

Example 3. Let $G=\{0, a, b, c\}$ be the Klein's group. Every element is its own inverse, and the product of any two distinct non-identity elements is the remaining non-identity element. Thus the Klein 4 -group admits the elegant presentation $a^{2}=b^{2}=c^{2}=a b c=0$. Define $r_{A}: G \rightarrow[0,1]$ by

$$
r_{\mathrm{A}}(\mathrm{x})= \begin{cases}0.75, & \text { if } \mathrm{x}=\mathrm{a} \\ 0.65, & \text { if } \mathrm{b}=\mathrm{b}, \\ 0.55, & \text { if } \mathrm{x}=\mathrm{c}, \\ 0.45, & \text { if } \mathrm{x}=0,\end{cases}
$$

and $w_{A}: G \rightarrow[0,2 \pi]$ by

$$
\mathrm{w}_{\mathrm{A}}(\mathrm{x})= \begin{cases}0.45 \pi, & \text { if } \mathrm{x}=\mathrm{a} \\ 0.45 \pi, & \text { if } \mathrm{x}=\mathrm{b} \\ 0.55 \pi, & \text { if } \mathrm{x}=\mathrm{c} \\ 0.65 \pi, & \text { if } \mathrm{x}=0\end{cases}
$$

$r_{A}^{\prime}: G \rightarrow[0,1]$ by

$$
r_{A}^{\prime}(x)= \begin{cases}0.25, & \text { if } x=a \\ 0.35, & \text { if } x=b \\ 0.45, & \text { if } x=c \\ 0.55, & \text { if } x=0\end{cases}
$$

and $\dot{w}_{A}: G \rightarrow[0,2 \pi]$ by

$$
w_{A}^{\prime}= \begin{cases}0.55 \pi, & \text { if } x=a \\ 0.55 \pi, & \text { if } x=b \\ 0.45 \pi, & \text { if } x=c \\ 0.35 \pi, & \text { if } x=0\end{cases}
$$

Let $T(a, b)=T_{p}(a, b)=a b$ and $S(a, b)=S_{p}(a, b)=a+b-a b$ for all $a, b \in[0,1]$, then $A=\left(\mu_{A}, \vartheta_{A}\right) \in$ $\operatorname{IFCN}(G)$.

Proposition 2. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(G)$ and T and S be idempotent. Then for all $x \in G$, and $n \geq 1$,
I. $A(e) \supseteq A(x)$.
II. $A\left(x^{n}\right) \supseteq A(x)$.
III. $A(x)=A\left(x^{-1}\right)$.

Proof: As $\mu_{A}=r_{A} e^{i W_{A}} \in \operatorname{ICFN}(G)$ so
I.

$$
\mathrm{r}_{\mathrm{A}}(\mathrm{e})=\mathrm{r}_{\mathrm{A}}\left(\mathrm{xx}^{-1}\right) \geq \mathrm{T}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{x}), \mathrm{r}_{\mathrm{A}}\left(\mathrm{x}^{-1}\right)\right) \geq \mathrm{T}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{x}), \mathrm{r}_{\mathrm{A}}(\mathrm{x})\right)=\mathrm{r}_{\mathrm{A}}(\mathrm{x})
$$

and

$$
\mathrm{w}_{\mathrm{A}}(\mathrm{e})=\mathrm{w}_{\mathrm{A}}\left(\mathrm{xx}^{-1}\right) \geq \min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}\left(\mathrm{x}^{-1}\right)\right\} \geq \min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}(\mathrm{x})\right\}=\mathrm{w}_{\mathrm{A}}(\mathrm{x}),
$$

and then

$$
\begin{equation*}
\mu_{A}(e)=r_{A}(e) e^{i w_{A}(e)} \geq r_{A}(x) e^{i w_{A}(x)}=\mu_{A}(x) \tag{a}
\end{equation*}
$$

Also

$$
\mathrm{w}_{\mathrm{A}}^{\prime}(\mathrm{e})=\mathrm{w}_{\mathrm{A}}\left(\mathrm{xx}^{-1}\right) \leq \max \left\{\mathrm{w}_{\mathrm{A}}^{\prime}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}^{\prime}\left(\mathrm{x}^{-1}\right)\right\} \leq \max \left\{\mathrm{w}_{\mathrm{A}}^{\prime}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}^{\prime}(\mathrm{x})\right\}=\mathrm{w}_{\mathrm{A}}^{\prime}(\mathrm{x}),
$$

and so

$$
\begin{equation*}
\vartheta_{\mathrm{A}}(\mathrm{e})=\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{e}) \mathrm{e}^{\mathrm{i} w_{A}^{\prime}(\mathrm{e})} \leq \mathrm{r}_{\mathrm{A}}(\mathrm{x}) \mathrm{e}^{\mathrm{i} w_{\mathrm{A}}(\mathrm{x})}=\vartheta_{\mathrm{A}}(\mathrm{x}) \tag{b}
\end{equation*}
$$

Now from Eqs. (a) and (b) we obtain that

$$
\mathrm{A}(\mathrm{e})=\left(\mu_{\mathrm{A}}(\mathrm{e}), \vartheta_{\mathrm{A}}(\mathrm{e})\right) \supseteq\left(\mu_{\mathrm{A}}(\mathrm{x}), \vartheta_{\mathrm{A}}(\mathrm{x})\right)=\mathrm{A}(\mathrm{x})
$$

II.

$$
r_{A}\left(x^{n}\right)=r_{A}(\underbrace{x \cdot x \ldots x}_{n}) \geq T(\underbrace{r_{A}(x), r_{A}(x), \ldots r_{A}(x)}_{n}))=r_{A}(x),
$$

and

$$
\mathrm{w}_{\mathrm{A}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{w}_{\mathrm{A}}(\underbrace{\mathrm{x} \cdot \mathrm{x} \ldots \mathrm{x}}_{\mathrm{n}}) \geq \min \{\underbrace{\mathrm{w}_{\mathrm{A}}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}(\mathrm{x}), \ldots \mathrm{w}_{\mathrm{A}}(\mathrm{x}}_{\mathrm{n}})\}=\mathrm{w}_{\mathrm{A}}(\mathrm{x})
$$

and so

$$
\begin{equation*}
\mu_{\mathrm{A}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{r}_{\mathrm{A}}\left(\mathrm{x}^{\mathrm{n}}\right) \mathrm{e}^{\mathrm{i} w_{\mathrm{A}}\left(\mathrm{x}^{\mathrm{n}}\right)} \geq \mathrm{r}_{\mathrm{A}}(\mathrm{x}) \mathrm{e}^{\mathrm{i} w_{\mathrm{A}}(\mathrm{x})}=\mu_{\mathrm{A}}(\mathrm{x}) \tag{a}
\end{equation*}
$$

Also

$$
r_{A}^{\prime}\left(x^{n}\right)=r_{A}^{\prime}(\underbrace{x . x \ldots x}_{n}) \leq S\{\underbrace{r_{A}^{\prime}(x), r_{A}^{\prime}(x), \ldots, r_{A}^{\prime}(x)}_{n})\}=r_{A}^{\prime}(x),
$$

and

$$
w_{A}^{\prime}\left(x^{n}\right)=w_{A}^{\prime}(\underbrace{\mathrm{x} \cdot \mathrm{x} \ldots \mathrm{x}}_{\mathrm{n}}) \leq \max \{\underbrace{\mathrm{w}_{\mathrm{A}}^{\prime}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}^{\prime}(\mathrm{x}), \ldots, w_{\mathrm{A}}(\mathrm{x}}_{\mathrm{n}})\}=\mathrm{w}_{\mathrm{A}}^{\prime}(\mathrm{x}),
$$

and

$$
\begin{equation*}
\vartheta_{\mathrm{A}}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{x}^{\mathrm{n}}\right) \mathrm{e}^{\mathrm{i} w_{\mathrm{A}}\left(\mathrm{x}^{\mathrm{n}}\right)} \leq{\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{x}) \mathrm{e}^{\mathrm{i} w_{\mathrm{A}}(\mathrm{x})}=\vartheta_{\mathrm{A}}(\mathrm{x})} \tag{b}
\end{equation*}
$$

Now using Eqs. (a) and (b) give us

$$
A\left(x^{n}\right)=\left(\mu_{A}\left(x^{n}\right), \vartheta_{A}\left(x^{n}\right)\right) \supseteq\left(\mu_{A}(x), \vartheta_{A}(x)\right)=A(x)
$$

III. As

$$
r_{A}(x)=r_{A}\left(x^{-1}\right)^{-1} \geq r_{A}\left(x^{-1}\right) \geq r_{A}(x)
$$

and so $r_{A}(x)=r_{A}\left(x^{-1}\right)$ and as

$$
\mathrm{w}_{\mathrm{A}}(\mathrm{x})=\mathrm{w}_{\mathrm{A}}\left(\mathrm{x}^{-1}\right)^{-1} \geq \mathrm{w}_{\mathrm{A}}\left(\mathrm{x}^{-1}\right) \geq \mathrm{w}_{\mathrm{A}}(\mathrm{x})
$$

Then $w_{A}(x)=w_{A}\left(x^{-1}\right)$. Then

$$
\begin{equation*}
\mu_{\mathrm{A}}\left(\mathrm{x}^{-1}\right)=\mathrm{r}_{\mathrm{A}}\left(\mathrm{x}^{-1}\right) \mathrm{e}^{\mathrm{i} \mathrm{w}_{\mathrm{A}}\left(\mathrm{x}^{-1}\right)}=\mathrm{r}_{\mathrm{A}}(\mathrm{x}) \mathrm{e}^{\mathrm{iw}} \mathrm{~A}(\mathrm{x})=\mu_{\mathrm{A}}(\mathrm{x}) \tag{a}
\end{equation*}
$$

Now

$$
r_{A}^{\prime}(x)=r_{A}^{\prime}\left(x^{-1}\right)^{-1} \leq r_{A}^{\prime}\left(x^{-1}\right) \leq r_{A}^{\prime}(x)
$$

so $r_{A}^{\prime}(x)=r_{A}^{\prime}\left(x^{-1}\right)$ and as

$$
\begin{aligned}
& w_{A}^{\prime}(x)=w_{A}^{\prime}\left(x^{-1}\right)^{-1} \leq w_{A}^{\prime}\left(x^{-1}\right) \leq w_{A}^{\prime}(x) \\
& \vartheta_{\mathrm{A}}\left(\mathrm{x}^{-1}\right)=\mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{x}^{-1}\right) \mathrm{e}^{\mathrm{i} w_{\mathrm{A}}\left(\mathrm{x}^{-1}\right)}=\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{x}) \mathrm{e}^{\mathrm{i} w_{\mathrm{A}}(\mathrm{x})}=\vartheta_{\mathrm{A}}(\mathrm{x}) \\
& \tilde{w}_{A}(x)=\dot{w}_{A}\left(x^{-1}\right) . \text { Then }
\end{aligned}
$$

(b) so

Thus from Eqs. (a) and (b) we give that

$$
\mathrm{A}\left(\mathrm{x}^{-1}\right)=\left(\mu_{\mathrm{A}}\left(\mathrm{x}^{-1}\right), \vartheta_{\mathrm{A}}\left(\mathrm{x}^{-1}\right)\right)=\left(\mu_{\mathrm{A}}(\mathrm{x}), \vartheta_{\mathrm{A}}(\mathrm{x})\right)=\mathrm{A}(\mathrm{x})
$$

Proposition 3. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(G)$ and T and S be idempotent. Then $A(x y)=A(y)$ if and only if $A(x)=A(e)$ for all $x, y \in G$.

Proof: As $A(x y)=A(y)$ for all $x, y \in G$ so if we let $y=e$, then we get that $A(x)=A(e)$.

Conversely, suppose that $A(x)=A(e)$ so from Proposition 2, we get that $A(x) \supseteq A(y)$ and $A(x) \supseteq A(x y)$. Then $r_{A}(x) \geq r_{A}(y)$ and $r_{A}(x) \geq r_{A}(x y)$ and $w_{A}(x) \geq w_{A}(y), w_{A}(x y)$. Also $r_{A}^{\prime}(x) \leq r_{A}^{\prime}(y)$ and $r_{A}^{\prime}(x) \leq r_{A}^{\prime}(x y)$ and $\dot{w}_{A}(x) \leq \dot{w}_{A}(y)$ and $\dot{w}_{A}(x) \leq \dot{w}_{A}(x y)$.

Now

$$
\begin{aligned}
& r_{A}(x y) \geq T\left(r_{A}(x), r_{A}(y)\right) \\
& \geq T\left(r_{A}(y), r_{A}(y)\right) \\
& =r_{A}(y)=r_{A}\left(x^{-1} x y\right) \\
& \geq T\left(r_{A}(x), r_{A}(x y)\right) \\
& \geq T\left(r_{A}(x y), r_{A}(x y)\right) \\
& =r_{A}(x y),
\end{aligned}
$$

and then

$$
\begin{equation*}
r_{\mathrm{A}}(x y)=\mathrm{r}_{\mathrm{A}}(\mathrm{y}) \tag{a}
\end{equation*}
$$

Also

$$
\begin{aligned}
& w_{A}(x y) \geq \min \left\{w_{A}(x), w_{A}(y)\right\} \\
& \geq \min \left\{w_{A}(y), w_{A}(y)\right\}=w_{A}(y)=w_{A}\left(x^{-1} x y\right) \\
& \geq \min \left\{w_{A}(x), w_{A}(x y)\right\} \\
& \geq \min \left\{w_{A}(x y), w_{A}(x y)\right\} \\
& =w_{A}(x y),
\end{aligned}
$$

and then

Therefore from Eqs. (a) and (b) we obtain that

$$
\begin{equation*}
\mu_{\mathrm{A}}(\mathrm{xy})=\mathrm{r}_{\mathrm{A}}(\mathrm{xy}) \mathrm{e}^{\mathrm{i} \mathrm{w}_{\mathrm{A}}(\mathrm{xy})}=\mathrm{r}_{\mathrm{A}}(\mathrm{y}) \mathrm{e}^{\mathrm{i} w_{\mathrm{A}}(\mathrm{y})}=\mu_{\mathrm{A}}(\mathrm{y}) . \tag{c}
\end{equation*}
$$

Also

$$
\begin{aligned}
& r_{A}^{\prime}(x y) \leq S\left(r_{A}^{\prime}(x), r_{A}^{\prime}(y)\right) \\
& \leq S\left(r_{A}^{\prime}(y), r_{A}^{\prime}(y)\right) \\
& =r_{A}^{\prime}(y)=r_{A}^{\prime}\left(x^{-1} x y\right) \\
& \leq S\left(r_{A}^{\prime}(x), r_{A}^{\prime}(x y)\right) \\
& \leq S\left(r_{A}^{\prime}(x y), r_{A}^{\prime}(x y)\right) \\
& =r_{A}^{\prime}(x y)
\end{aligned}
$$

Then

$$
\begin{equation*}
r_{A}^{\prime}(x y)=r_{A}^{\prime}(y) . \tag{d}
\end{equation*}
$$

Also

```
w
<mo.lu! (w) ... (.,l
```

$$
\begin{aligned}
& \leq \max \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}(\mathrm{xy})\right\} \\
& \leq \max \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{xy}), \mathrm{w}_{\mathrm{A}}(\mathrm{xy})\right\} \\
& =\mathrm{w}_{\mathrm{A}}(\mathrm{xy}),
\end{aligned}
$$

and then

$$
\begin{equation*}
w_{\mathrm{A}}^{\prime}(\mathrm{xy})=\mathrm{w}_{\mathrm{A}}(\mathrm{y}) . \tag{e}
\end{equation*}
$$

Therefore from Eqs. (d) and (e) we obtain that

$$
\begin{equation*}
\vartheta_{\mathrm{A}}(\mathrm{xy})=\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{xy}) \mathrm{e}^{\mathrm{i} w_{\mathrm{A}}(\mathrm{xy})}=\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{y}) \mathrm{e}^{\mathrm{i} w_{\mathrm{A}}(\mathrm{y})}=\vartheta_{\mathrm{A}}(\mathrm{y}) . \tag{f}
\end{equation*}
$$

Now as Eqs. (c) and (f) we get that

$$
\mathrm{A}(\mathrm{xy})=\left(\mu_{\mathrm{A}}(\mathrm{xy}), \vartheta_{\mathrm{A}}(\mathrm{xy})\right)=\left(\mu_{\mathrm{A}}(\mathrm{y}), \vartheta_{\mathrm{A}}(\mathrm{y})\right)=\mathrm{A}(\mathrm{y})
$$

4 | Composition, Inverse and Intersection of IFCN(G)

Definition 12. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(G)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in \operatorname{IFCN}(G)$ such that $\mu_{A}=r_{A} e^{i W_{A}} \in \operatorname{IFCN}(G)$ and $\vartheta_{A}=r_{A}^{\prime} e^{i W_{A} A}$ and $\mu_{B}=r_{B} e^{i W_{B}}$ and $\vartheta_{B}=\dot{r}_{B} e^{i W_{B}}$. We define the composion of A and B as $A o B$ and for all $x \in G$ we have

$$
\begin{aligned}
& (\mathrm{A} \circ \mathrm{~B})(\mathrm{x})=\left(\left(\mu_{\mathrm{A}}, \vartheta_{\mathrm{A}}\right) \mathrm{o}\left(\mu_{\mathrm{B}}, \vartheta_{\mathrm{B}}\right)\right)(\mathrm{x})=\left(\mu_{\mathrm{AoB}}(\mathrm{x}), \vartheta_{\mathrm{AoB}}(\mathrm{x})\right)= \\
& \left(\left(\mathrm{r}_{\mathrm{A}} \text { or }_{\mathrm{B}}\right)(\mathrm{x}) \mathrm{e}^{\mathrm{i}\left(\mathrm{w}_{\mathrm{A}} \circ \mathrm{w}_{\mathrm{B}}\right)(\mathrm{x})},\left(\mathrm{r}_{\mathrm{A}}^{\prime} \mathrm{or}_{\mathrm{B}}^{\prime}\right)(\mathrm{x}) \mathrm{e}^{\mathrm{i}\left(\mathrm{w}_{\mathrm{A}} \circ \mathrm{w}_{\mathrm{B}}\right)(\mathrm{x})} .\right.
\end{aligned}
$$

Such that r_{A} or $r_{B}: G \rightarrow[0,1]$ and $w_{A} O w_{B}: G \rightarrow[0,2 \pi]$ and r_{A}^{\prime} or $\dot{r}_{B}: G \rightarrow[0,1]$ and $\dot{w}_{A} o \dot{w}_{B}: G \rightarrow[0,2 \pi]$. Now define

$$
\left.r_{A} \text { o } r_{B}\right)(x)= \begin{cases}\sup _{x=a b} T\left(r_{A}(a), r_{B}(b)\right), & \text { if } x=a b, \\ 0, & \text { if } x \neq a b,\end{cases}
$$

and

$$
\left(w_{A} \circ w_{B}\right)(x)= \begin{cases}\min _{x=a b}\left\{w_{A}(a), w_{B}(b)\right\}, & \text { if } x=a b, \\ 0, & \text { if } x \neq a b,\end{cases}
$$

and

$$
\left(\mathrm{r}_{\mathrm{A}}^{\prime} \text { o } r_{\mathrm{B}}^{\prime}\right)(\mathrm{x})= \begin{cases}\inf _{x=a b} S\left(\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{a}), \mathrm{r}_{\mathrm{B}}^{\prime}(\mathrm{b})\right), & \text { if } \mathrm{x}=\mathrm{ab}, \\ 0, & \text { if } x \neq a b,\end{cases}
$$

and

$$
\left(w_{\mathrm{A}}^{\prime} \text { o } w_{\mathrm{B}}^{\prime}\right)(\mathrm{x})= \begin{cases}\max _{\mathrm{x}=\mathrm{ab}}\left\{\mathrm{w}_{\mathrm{A}}(\mathrm{a}), \mathrm{w}_{\mathrm{A}}(\mathrm{~b})\right\}, & \text { if } \mathrm{x}=\mathrm{ab}, \\ 0, & \text { if } \mathrm{x} \neq \mathrm{ab},\end{cases}
$$

For all $x \in G$.

Proposition 4. Let $A^{-1}=\left(\mu_{A}^{-1}, \vartheta_{A}^{-1}\right) \in \operatorname{IFS}(G)$ be the inverse of $A=\left(\mu_{A}, \vartheta_{A}\right) \in I F C N(G)$ such that for all $x \in G$:

$$
\mathrm{A}^{-1}(\mathrm{x})=\left(\mu_{\mathrm{A}}^{-1}(\mathrm{x}), \vartheta_{\mathrm{A}}^{-1}(\mathrm{x})\right)=\left(\mu_{\mathrm{A}}\left(\mathrm{x}^{-1}\right), v \mathrm{~A}\left(\mathrm{x}^{-1}\right)\right)=\mathrm{A}\left(\mathrm{x}^{-1}\right) .
$$

If T and S be idempotent then $A=\left(\mu_{A}, \vartheta_{A}\right) \in I F C N(G)$ if and only if A satisfies the following conditions:
I. $A \supseteq A \circ A$.
II. $A^{-1}=A$.

Proof: Let $x, y, z \in G$ with $x=y z$ and $A \in I C F N(G)$. Then
I.

$$
\mathrm{r}_{\mathrm{A}}(\mathrm{x})=\mathrm{r}_{\mathrm{A}}(\mathrm{yz}) \geq \mathrm{T}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{y}), \mathrm{r}_{\mathrm{A}}(\mathrm{z})\right)=\left(\mathrm{r}_{\mathrm{A}} \text { o } \mathrm{r}_{\mathrm{A}}\right)(\mathrm{x})
$$

and

$$
\mathrm{w}_{\mathrm{A}}(\mathrm{x})=\mathrm{w}_{\mathrm{A}}(\mathrm{yz}) \geq \min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{y}), \mathrm{w}_{\mathrm{A}}(\mathrm{z})\right\}=\left(\mathrm{w}_{\mathrm{A}} \mathrm{o} \mathrm{w}_{\mathrm{A}}\right)(\mathrm{x}),
$$

then

$$
\begin{equation*}
\mu_{\mathrm{A}}(\mathrm{x})=\mathrm{r}_{\mathrm{A}}(\mathrm{x}) \mathrm{e}^{\mathrm{i} \mathrm{w}_{\mathrm{A}}(\mathrm{x})} \geq\left(\mathrm{r}_{\mathrm{A}} \text { or } \mathrm{r}_{\mathrm{A}}\right)(\mathrm{x}) \mathrm{e}^{\mathrm{i}\left(\mathrm{w}_{\mathrm{A}} o w_{A}\right)(\mathrm{x})}=\left(\mu_{\mathrm{AoA}}\right)(\mathrm{x}) \tag{a}
\end{equation*}
$$

Also

$$
r_{A}^{\prime}(x)=r_{A}^{\prime}(y z) \leq S\left(r_{A}^{\prime}(y), r_{A}^{\prime}(z)\right)=\left(r_{A}^{\prime} \text { o } r_{A}^{\prime}\right)(x),
$$

and

$$
\mathrm{w}_{\mathrm{A}}(\mathrm{x})=\mathrm{w}_{\mathrm{A}}(\mathrm{yz}) \geq \min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{y}), \mathrm{w}_{\mathrm{A}}(\mathrm{z})\right\}=\left(\mathrm{w}_{\mathrm{A}} \text { o } \mathrm{w}_{\mathrm{A}}\right)(\mathrm{x}),
$$

then

$$
\begin{equation*}
\vartheta_{\mathrm{A}}(\mathrm{x})=\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{x}) \mathrm{e}^{\mathrm{i} w_{\mathrm{A}}(\mathrm{x})} \geq\left(\mathrm{r}_{\mathrm{A}}^{\prime} \text { o } \mathrm{r}_{\mathrm{A}}^{\prime}\right)(\mathrm{x}) \mathrm{e}^{\mathrm{i}\left(\mathrm{w}_{\mathrm{A}} o w_{\mathrm{A}}^{\prime}\right)(\mathrm{x})}=\left(\vartheta_{\mathrm{AoA}}\right)(\mathrm{x}) . \tag{b}
\end{equation*}
$$

Thus from Eqs. (a) and (b) we get that

$$
\left.\left.\mathrm{A}(\mathrm{x})=\left(\mu_{\mathrm{A}}(\mathrm{x}), \vartheta_{\mathrm{A}}(\mathrm{x})\right) \supseteq\left(\mu_{\mathrm{AoA}}\right)(\mathrm{x}), \vartheta_{\mathrm{AoA}}\right)(\mathrm{x})\right)=(\mathrm{A} \circ \mathrm{~A})(\mathrm{x})
$$

and then $A \supseteq A o A$.
II. As Proposition 2, we have that $A^{-1}(x)=A\left(x^{-1}\right)=A(x)$ for all $x \in G$. Thus $A^{-1}=A$.

Conversely, let $A \supseteq A$ o A and $A^{-1}=A$ and $x, y, z \in G$ with $x=y z$. Since $A \supseteq A$ o A so $r_{A}(x) \geq\left(r_{A}\right.$ or $\left.r_{A}\right)(x)$ and then

$$
\begin{equation*}
\mathrm{r}_{\mathrm{A}}(\mathrm{yz})=\mathrm{r}_{\mathrm{A}}(\mathrm{x}) \geq \mathrm{r}_{\mathrm{A}} \operatorname{or}_{\mathrm{A}}(\mathrm{x})=\sup _{\mathrm{x}=\mathrm{ab}} \mathrm{~T}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{y}), \mathrm{r}_{\mathrm{B}}(\mathrm{z})\right) \geq \mathrm{T}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{y}), \mathrm{r}_{\mathrm{A}}(\mathrm{z})\right) \tag{a}
\end{equation*}
$$

$\mathrm{w}_{\mathrm{A}}(\mathrm{x}) \geq\left(\mathrm{w}_{\mathrm{A}} \mathrm{o} \mathrm{w}_{\mathrm{A}}\right)(\mathrm{x})$ and thus,

$$
\begin{equation*}
\mathrm{w}_{\mathrm{A}}(\mathrm{yz})=\mathrm{w}_{\mathrm{A}}(\mathrm{x}) \geq\left(\mathrm{w}_{\mathrm{A}} \text { o } \mathrm{w}_{\mathrm{A}}\right)(\mathrm{x})=\min _{\mathrm{x}=\mathrm{yz}}\left\{\mathrm{w}_{\mathrm{A}}(\mathrm{y}), \mathrm{w}_{\mathrm{B}}(\mathrm{z})\right\} \geq\left\{\mathrm{w}_{\mathrm{A}}(\mathrm{y}), \mathrm{w}_{\mathrm{A}}(\mathrm{z})\right\} . \tag{b}
\end{equation*}
$$

$r_{A}^{\prime}(x) \leq\left(r_{A}^{\prime} \circ r_{A}^{\prime}\right)(x)$ and then,

$$
\begin{equation*}
r_{A}^{\prime}(y z)=r_{A}^{\prime}(x) \leq r_{A}^{\prime} \text { or }{ }_{A}(x)=\inf _{x=y z} S\left(r_{A}^{\prime}(y), r_{B}^{\prime}(z)\right) \leq S\left(r_{A}^{\prime}(y), r_{A}^{\prime}(z)\right) . \tag{c}
\end{equation*}
$$

$\dot{w}_{A}(x) \leq\left(\dot{w}_{A} o \dot{w}_{A}\right)(x)$ and so

$$
\begin{equation*}
\mathrm{w}_{\mathrm{A}}(\mathrm{yz})=\mathrm{w}_{\mathrm{A}}(\mathrm{x}) \leq\left(\mathrm{w}_{\mathrm{A}} \mathrm{ow}_{\mathrm{A}}\right)(\mathrm{x})=\max _{\mathrm{x}=\mathrm{yz}}\left\{\mathrm{w}_{\mathrm{A}}(\mathrm{y}), \mathrm{w}_{\mathrm{A}}(\mathrm{z})\right\} \leq\left\{\mathrm{w}_{\mathrm{A}}(\mathrm{y}), \mathrm{w}_{\mathrm{A}}(\mathrm{z})\right\} . \tag{d}
\end{equation*}
$$

As $A^{-1}=A$ so,

$$
\begin{align*}
& r_{A}\left(x^{-1}\right)=r_{A}^{-1}(x)=r_{A}(x) \tag{e}\\
& r_{A}^{\prime}\left(x^{-1}\right)=r_{A}^{\prime}-1(x)=r_{A}^{\prime}(x) . \tag{f}\\
& w_{A}\left(x^{-1}\right)=w_{A}^{-1}(x)=w_{A}(x) . \tag{g}\\
& w_{A}^{\prime}\left(x^{-1}\right)=w_{A}^{-1}(x)=w_{A}^{\prime}(x) . \tag{h}
\end{align*}
$$

Thus from Eqs. (a)-(b), we get that $A \in I F C N(G)$.

Corollary 1. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(G)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in \operatorname{IFCN}(G)$ and G be commutative group. Then A o $B \in \operatorname{IFCN}(G)$ if and only if A o $B=B o A$.

Proof: If A, B, A o $B \in \operatorname{IFCN}(G)$, then from Proposition 4 we get that $A^{-1}=A, B^{-1}=B$ and $(B o A)^{-1}=B$ o A. Now $A \circ B=A^{-1} \circ B^{-1}=(B o A)^{-1}=B \circ A$. conversely, since $A \circ B=B o A$ we have

$$
(\mathrm{AoB})^{-1}=(\mathrm{BoA})^{-1}=\mathrm{A}^{-1} \circ \mathrm{~B}^{-1}=\mathrm{A} \circ \mathrm{~B} .
$$

Also

$$
(A \circ B) \circ(A \circ B)=A \circ(B \circ A) \circ B=A \circ(A \circ B) \circ B=(A \circ A) \circ(B \circ B) \subseteq A \circ B .
$$

Now Proposition 4 gives us that A o $B \in \operatorname{IFCN}(G)$.
Definition 13. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(G)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in \operatorname{IFCN}(G)$ such that, $\mu_{A}=r_{A} e^{i w_{A}}$ and $\vartheta_{A}(x)=$ $\dot{r}_{A}^{\prime} e^{i W_{A}}$ and $\mu_{B}=r_{B} e^{i W_{B}}$ and $\vartheta_{B}(x)=r_{B} e^{i \omega_{B}}$. define the intersection of A and B as $A \cap B$ such that for all $x \in G$:

$$
\begin{aligned}
& (A \cap B)(x)=\left(\left(\mu_{A}, \vartheta_{A}\right) \cap\left(\mu_{B}, \vartheta_{B}\right)\right)(x) \\
& =\left(\mu_{A \cap B}(x), v A \cap B(x)\right) \\
& =\left(\left(r_{A} \cap r_{B}\right)(x) e^{i\left(w_{A} \cap w_{B}\right)(x)},\left(\left(r_{A}^{\prime} \cap r_{B}^{\prime}\right)(x) e^{i\left(w_{A}^{\prime} \cap w_{B}^{\prime}\right)(x)} .\right.\right.
\end{aligned}
$$

Such that $r_{A} \cap r_{B}: G \rightarrow[0,1] \quad$ and $w_{A} \cap W_{B}: G \rightarrow[0,2 \pi] \quad$ and $\quad r_{A}^{\prime} \cap \dot{r}_{B}^{\prime}: G \rightarrow[0,1] \quad$ and $w_{A} \cap \dot{w}_{A}: G \rightarrow[0,2 \pi]$ define:

$$
\begin{aligned}
& \left(\mathrm{r}_{\mathrm{A}} \cap \mathrm{r}_{\mathrm{B}}\right)(\mathrm{x})=\mathrm{T}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{x}), \mathrm{r}_{\mathrm{A}}(\mathrm{x})\right), \\
& \left(\mathrm{w}_{\mathrm{A}} \cap \mathrm{w}_{\mathrm{B}}\right)(\mathrm{x})=\min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}(\mathrm{x})\right\}, \\
& \left(\mathrm{r}_{\mathrm{A}}^{\prime} \cap \mathrm{r}_{\mathrm{B}}^{\prime}\right)(\mathrm{x})=\mathrm{S}\left(\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{x}), \mathrm{r}_{\mathrm{B}}^{\prime}(\mathrm{x})\right), \\
& \left(\mathrm{w}_{\mathrm{A}}^{\prime} \cap \mathrm{w}_{\mathrm{B}}\right)(\mathrm{x})=\max \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{x}),{w_{\mathrm{B}}^{\prime}}(\mathrm{x})\right\}, \\
& \text { for all } \mathrm{x} \in \mathrm{G} .
\end{aligned}
$$

Proposition 5. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(G)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in \operatorname{IFCN}(G)$. Then $A \cap B \in \operatorname{IFCN}(G)$.

Proof: Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(G)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in \operatorname{IFCN}(G)$ such that $\mu_{A}=r_{A} e^{i W_{A}}$ and $\vartheta_{A}(x)=r_{A}^{\prime} e^{i W_{A}}$ and $\mu_{B}=r_{B} e^{i W_{B}}$ and $\vartheta_{B}(x)=\dot{r}_{B}^{\prime} e^{i W_{B}}$.
I. Let $g_{1}, g_{2} \epsilon G$. then

$$
\begin{aligned}
& \left(\mathrm{r}_{\mathrm{A}} \cap \mathrm{r}_{\mathrm{B}}\right)\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right)=\mathrm{T}\left(\mathrm{r}_{\mathrm{A}}\left(\mathrm{~g}_{1} \mathrm{~g}_{2}\right), \mathrm{r}_{\mathrm{B}}\left(\mathrm{~g}_{1} \mathrm{~g}_{2}\right)\right) \\
& \geq \mathrm{T}\left(\mathrm{~T}\left(\mathrm{r}_{\mathrm{A}}\left(\mathrm{~g}_{1}\right), \mathrm{r}_{\mathrm{A}}\left(\mathrm{~g}_{2}\right)\right), \mathrm{T}\left(\mathrm{r}_{\mathrm{B}}\left(\mathrm{~g}_{1}\right), \mathrm{r}_{\mathrm{B}}\left(\mathrm{~g}_{2}\right)\right)\right) \\
& =\mathrm{T}\left(\mathrm{~T}\left(\mathrm{r}_{\mathrm{A}}\left(\mathrm{~g}_{1}\right), \mathrm{r}_{\mathrm{B}}\left(\mathrm{~g}_{1}\right)\right), \mathrm{T}\left(\mathrm{r}_{\mathrm{A}}\left(\mathrm{~g}_{2}\right), \mathrm{r}_{\mathrm{B}}\left(\mathrm{~g}_{2}\right)\right)\right)(\text { Lemma } 1) \\
& =\mathrm{T}\left(\left(\mathrm{r}_{\mathrm{A}} \cap \mathrm{r}_{\mathrm{B}}\right)\left(\mathrm{g}_{1}\right),\left(\mathrm{r}_{\mathrm{A}} \cap \mathrm{r}_{\mathrm{B}}\right)\left(\mathrm{g}_{2}\right)\right),
\end{aligned}
$$

and thus

$$
\left(\mathrm{r}_{\mathrm{A}} \cap \mathrm{r}_{\mathrm{B}}\right)\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right) \geq \mathrm{T}\left(\left(\mathrm{r}_{\mathrm{A}} \cap \mathrm{r}_{\mathrm{B}}\right)\left(\mathrm{g}_{1}\right),\left(\mathrm{r}_{\mathrm{A}} \cap \mathrm{r}_{\mathrm{B}}\right)\left(\mathrm{g}_{2}\right)\right) .
$$

II. If $g \in G$, then

$$
\left(\mathrm{r}_{\mathrm{A}} \cap \mathrm{r}_{\mathrm{B}}\right)\left(\mathrm{g}^{-1}\right)=\mathrm{T}\left(\mathrm{r}_{\mathrm{A}}\left(\mathrm{~g}^{-1}\right), \mathrm{r}_{\mathrm{B}}\left(\mathrm{~g}^{-1}\right)\right) \geq \mathrm{T}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{~g}), \mathrm{r}_{\mathrm{B}}(\mathrm{~g})\right)=\left(\mathrm{r}_{\mathrm{A}} \cap \mathrm{r}_{\mathrm{B}}\right)(\mathrm{g}),
$$

and so $\left(r_{A} \cap r_{B}\right)\left(g^{-1}\right) \geq\left(r_{A} \cap r_{B}\right)(g)$.
III. If $g \in G$, then

```
\(\left(\mathrm{w}_{\mathrm{A}} \cap \mathrm{w}_{\mathrm{B}}\right)\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right)=\min \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right), \mathrm{w}_{\mathrm{B}}\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right)\right\}\)
\(\geq \min \left\{\min \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{g}_{1}\right), \mathrm{w}_{\mathrm{A}}\left(\mathrm{g}_{2}\right)\right\}, \min \left\{\mathrm{w}_{\mathrm{B}}\left(\mathrm{g}_{1}\right), \mathrm{w}_{\mathrm{B}}\left(\mathrm{g}_{2}\right)\right\}\right\}\)
\(=\min \left\{\min \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{g}_{1}\right), \mathrm{w}_{\mathrm{B}}\left(\mathrm{g}_{1}\right)\right\}, \min \left\{\mathrm{w}_{\mathrm{B}}\left(\mathrm{g}_{2}\right), \mathrm{w}_{\mathrm{B}}\left(\mathrm{g}_{2}\right)\right\}\right\}\)
\(=\min \left\{\left(\mathrm{w}_{\mathrm{A}} \cap \mathrm{w}_{\mathrm{B}}\right)\left(\mathrm{g}_{1}\right),\left(\mathrm{w}_{\mathrm{A}} \cap \mathrm{w}_{\mathrm{B}}\right)\left(\mathrm{g}_{2}\right)\right\}\),
```

and so $\left(w_{A} \cap w_{B}\right)\left(g_{1} g_{2}\right) \geq \min \left\{\left(w_{A} \cap w_{B}\right)\left(g_{1}\right),\left(w_{A} \cap w_{B}\right)\left(g_{2}\right)\right\}$.
IV. Let $\mathrm{g} \in \mathrm{G}$, so

$$
\left(w_{A} \cap w_{B}\right)\left(g^{-1}\right)=\min \left\{w_{A}\left(g^{-1}\right), w_{B}\left(g^{-1}\right)\right\} \geq \min \left\{w_{A}(g), w_{B}(g)\right\}=\left(w_{A} \cap w_{B}\right)(g),
$$

and so $\left(w_{A} \cap w_{B}\right)\left(g^{-1}\right) \geq\left(w_{A} \cap w_{B}\right)(g)$.
V. Let $g_{1}, g_{2} \epsilon G$. then

$$
\begin{aligned}
& \left(r_{A}^{\prime} \cap r_{B}^{\prime}\right)\left(g_{1} g_{2}\right)=S\left(r_{A}^{\prime}\left(g_{1} g_{2}\right), r_{B}^{\prime}\left(g_{1} g_{2}\right)\right) \\
& \leq S\left(S\left(r_{A}^{\prime}\left(g_{1}\right), r_{A}^{\prime}\left(g_{2}\right)\right), S\left(r_{B}^{\prime}\left(g_{1}\right), r_{B}^{\prime}\left(g_{2}\right)\right)\right) \\
& =S\left(S\left(r_{A}^{\prime}\left(g_{1}\right), r_{B}^{\prime}\left(g_{1}\right)\right), S\left(r_{A}\left(g_{2}\right), r_{B}^{\prime}\left(g_{2}\right)\right)\right)(\text { Lemma } 1) \\
& =S\left(\left(r_{A}^{\prime} \cap r_{B}^{\prime}\right)\left(g_{1}\right),\left(r_{A}^{\prime} \cap r_{B}^{\prime}\right)\left(g_{2}\right)\right),
\end{aligned}
$$

and thus

$$
\left(r_{A}^{\prime} \cap r_{B}^{\prime}\right)\left(g_{1} g_{2}\right) \leq S\left(\left(r_{A}^{\prime} \cap r_{B}^{\prime}\right)\left(g_{1}\right),\left(r_{A}^{\prime} \cap r_{B}^{\prime}\right)\left(g_{2}\right)\right) .
$$

VI. If $g \in G$, then

$$
\left(\mathrm{r}_{\mathrm{A}}^{\prime} \cap \mathrm{r}_{\mathrm{B}}^{\prime}\right)\left(\mathrm{g}^{-1}\right)=\mathrm{S}\left(\mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{g}^{-1}\right), \mathrm{r}_{\mathrm{B}}^{\prime}\left(\mathrm{g}^{-1}\right)\right) \leq \mathrm{S}\left(\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{g}), \mathrm{r}_{\mathrm{B}}^{\prime}(\mathrm{g})\right)=\left(\mathrm{r}_{\mathrm{A}}^{\prime} \cap \mathrm{r}_{\mathrm{B}}^{\prime}\right)(\mathrm{g}),
$$

and so $\left(r_{A}^{\prime} \cap \dot{r}_{B}^{\prime}\right)\left(g^{-1}\right) \leq\left(r_{A}^{\prime} \cap \dot{r}_{B}^{\prime}\right)(g)$.

VII. Let $g_{1}, g_{2} \epsilon G$. Then

$$
\begin{aligned}
& \left(w_{A} \cap w_{B}\right)\left(g_{1} g_{2}\right)=\max \left\{w_{A}\left(g_{1} g_{2}\right), w_{B}\left(g_{1} g_{2}\right)\right\} \\
& \leq \max \left\{\max \left\{w_{\mathrm{A}}\left(\mathrm{~g}_{1}\right), \mathrm{w}_{\mathrm{A}}\left(\mathrm{~g}_{2}\right)\right\}, \max \left\{\mathbf{w}_{\mathrm{B}}\left(\mathrm{~g}_{1}\right), \mathbf{w}_{\mathrm{B}}\left(\mathrm{~g}_{2}\right)\right\}\right\} \\
& =\max \left\{\max \left\{w_{\mathrm{A}}\left(\mathrm{~g}_{1}\right), \mathbf{w}_{\mathrm{B}}\left(\mathrm{~g}_{1}\right)\right\}, \max \left\{\mathbf{w}_{\mathrm{A}}\left(\mathrm{~g}_{2}\right), \mathbf{w}_{\mathrm{B}}\left(\mathrm{~g}_{2}\right)\right\}\right\} \\
& =\max \left\{\left(\mathrm{w}_{\mathrm{A}} \cap \mathrm{w}_{\mathrm{B}}\right)\left(\mathrm{g}_{1}\right),\left(\mathrm{w}_{\mathrm{A}} \cap \mathrm{w}_{\mathrm{B}}\right)\left(\mathrm{g}_{2}\right)\right\} \text {, }
\end{aligned}
$$

and so $\left(\tilde{W}_{A} \cap \hat{W}_{B}\right)\left(g_{1} g_{2}\right) \leq \max \left\{\left(\tilde{W}_{A} \cap \dot{W}_{B}\right)\left(g_{1}\right),\left(\dot{W}_{A} \cap \hat{W}_{B}\right)\left(g_{2}\right)\right\}$.
VIII. Let $\mathrm{g} \in \mathrm{G}$, so

$$
\left(w_{A} \cap w_{B}\right)\left(g^{-1}\right)=\max \left\{w_{A}\left(g^{-1}\right), w_{B}\left(g^{-1}\right)\right\} \leq \max \left\{w_{\mathrm{A}}(\mathrm{~g}), w_{\mathrm{B}}(\mathrm{~g})\right\}=\left(w_{\mathrm{A}} \cap \mathfrak{w}_{\mathrm{B}}\right)(\mathrm{g}),
$$

and so $\left(w_{A} \cap \dot{w}_{B}\right)\left(g^{-1}\right) \leq\left(\dot{w}_{A} \cap \hat{w}_{B}\right)(g)$.

Then above steps give us that $A \cap B \in I F C N(G)$.

Corollary 2. Let $I_{n}=\{1,2, \ldots, n\}$. If $\left\{A_{i}=\left(\mu_{A_{i^{\prime}}} \vartheta_{A_{i}}\right) / i \in I_{n}\right\} \subseteq I F C N(G)$.

Then $A=\bigcap_{i \in I_{n}} A_{i} \in \operatorname{IFCN}(G)$.

5 | Normality of ICFN(G)

Definition 14. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in I F C N(G)$ such that $\mu_{A}=r_{A} e^{i W_{A}}$ and $\vartheta_{A}(x)=r_{A}^{\prime} e^{i W_{A}}$. We say that $A=\left(\mu_{A}, \vartheta_{A}\right)$ is normal if for all $x, y \in G$, we have that $A\left(x y x^{-1}\right)=A(y)$ which means that $r_{A}\left(x y x^{-1}\right)=r_{A}(y)$ and $w_{A}\left(x y x^{-1}\right)=w_{A}(y)$ and $r_{A}^{\prime}\left(x y x^{-1}\right)=r_{A}^{\prime}(y)$ and $\dot{w}_{A}\left(x y x^{-1}\right)=\dot{w}_{A}^{\prime}(y)$. We denote by NIFCN(G) the set of all normal intuitionistic fuzzy complex subgroups with respect to norms (t-norm T and s-norm S).

Proposition 6. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in N \operatorname{NIFCN}(G)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in N I F C N(G)$ such that $\mu_{A}=r_{A} e^{i w_{A}}$ and $\vartheta_{A}(x)=r_{A}^{\prime} e^{i W_{A}}$ and $\mu_{B}=r_{B} e^{i W_{B}}$ and $\vartheta_{B}(x)=\hat{r}_{B}^{\prime} e^{i W_{B}}$. Then $A \cap B \in N I C F N(G)$.
I. $\quad\left(r_{A} \cap r_{B}\right)\left(x y x^{-1}\right)=T\left(r_{A}\left(x y x^{-1}\right), r_{B}\left(x y x^{-1}\right)\right)=T\left(r_{A}(y), r_{B}(y)\right)=\left(r_{A} \cap r_{B}\right)(y)$.
II. $\quad\left(w_{A} \cap w_{B}\right)\left(x y x^{-1}\right)=m i n\left\{w_{A}\left(x y x^{-1}\right), w_{B}\left(x y x^{-1}\right)\right\}=\min _{\{ } w_{A}(y), w_{B}(y)=\left(w_{A} \cap w_{B}\right)(y)$.
III. $\quad\left(r_{A}^{\prime}\left(\cap r_{B}^{\prime}\right)\left(x y x^{-1}\right)=S\left(r_{A}^{\prime}\left(\left(x y x^{-1}\right), r_{B}^{\prime}\left(x y x^{-1}\right)\right)=S\left(r_{A}^{\prime}\left((y), r_{B}^{\prime}(y)\right)=\left(r_{A}^{\prime}\left(\cap r_{B}^{\prime}\right)(y)\right.\right.\right.\right.$.
IV. $\left.\left.\quad\left(w_{A}^{\prime} \cap \tilde{w}_{B}^{\prime}\right)\left(x y x^{-1}\right)=\max _{\{ } \tilde{w}_{A}\left(x y x^{-1}\right), \hat{w}_{B}^{\prime}\left(x y x^{-1}\right)\right\}=\max _{\{ } w_{A}^{\prime}(y), w_{B}^{\prime}(y)\right\}=\left(w_{A}^{\prime} \hat{w}_{B}^{\prime}\right)(y)$.

Then from above steps, we get that

$$
(A \cap B)\left(x y x^{-1}\right)=\left(\mu_{A \cap B}\left(x y x^{-1}\right), \vartheta_{A \cap B}\left(x y x^{-1}\right)\right)=\left(\mu_{A \cap B}(y), \vartheta_{A \cap B}(y)\right)=(A \cap B)(y) .
$$

And so $A \cap B \in N I F C N(G)$.

Corollary 3. Let $I_{n}=\{1,2, \ldots, n\}$. If $\left\{A_{i}=\left(\mu_{A_{i}^{\prime}}, \vartheta_{A_{i}}\right) / i \in I_{n}\right\} \subseteq \operatorname{NIFCN}(G)$. Then $A=\bigcap_{i \in I_{n}} A_{i} \in \operatorname{NIFCN}(G)$.

Definition 15. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in N I F C N(G)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in \operatorname{IFCN}(G)$ such that $A \subseteq B$. Then A is called normal of B, written $A \sqsubseteq B$, if
I. $\quad r_{A}\left(x y x^{-1}\right) \geq T\left(r_{A}(y), r_{B}(x)\right)$.
II. $w_{A}\left(x y x^{-1}\right) \geq \min \left\{w_{A}(y), w_{B}(x)\right\}$.
III. $r_{A}^{\prime}\left(x y x^{-1}\right) \leq S\left\{r_{A}^{\prime}(y), r_{B}^{\prime}(x)\right.$.
IV. $\tilde{w}_{A}\left(x y x^{-1}\right) \leq \max \left\{\dot{w}_{A}(y), \tilde{w}_{B}(x)\right\}$.

For all $x, y \in G$.

Proposition 7. If T and S be idempotent and $A=\left(\mu_{A}, \vartheta_{A}\right) \in I F C N(G)$, then $A \subseteq A$.

Proof: Let $x, y \in G$ and $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(G)$. Then

$$
\begin{aligned}
& r_{A}\left(x y x^{-1}\right) \geq T\left(r_{A}(x y), r_{A}\left(x^{-1}\right)\right) \\
& \geq T\left(r_{A}(x y), r_{A}(x)\right) \geq T\left(T\left(r_{A}(x), r_{A}(y)\right), r_{A}(x)\right) \\
& =T\left(T\left(r_{A}(x), r_{A}(x)\right), r_{A}(y)\right)=T\left(r_{A}(x), r_{A}(y)\right)=T\left(r_{A}(y), r_{A}(x)\right),
\end{aligned}
$$

and so

$$
\begin{equation*}
r_{A}\left(x y x^{-1}\right) \geq T\left(r_{A}(y), r_{A}(x)\right) \tag{1}
\end{equation*}
$$

also

$$
\begin{aligned}
& \mathrm{w}_{\mathrm{A}}\left(\operatorname{xyx}^{-1}\right) \geq \min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{xy}), \mathrm{w}_{\mathrm{A}}\left(\mathrm{x}^{-1}\right)\right\} \\
& =\min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{xy}), \mathrm{w}_{\mathrm{A}}(\mathrm{x})\right\} \\
& \geq \min \left\{\min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}(\mathrm{y})\right\}, \mathrm{w}_{\mathrm{A}}(\mathrm{x})\right\} \\
& =\min \left\{\min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}(\mathrm{x})\right\}, \mathrm{w}_{\mathrm{A}}(\mathrm{y})\right\} \\
& =\min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}(\mathrm{y})\right\} \\
& =\min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{y}), \mathrm{w}_{\mathrm{A}}(\mathrm{x})\right\},
\end{aligned}
$$

Then

$$
\begin{equation*}
\mathrm{w}_{\mathrm{A}}\left(\mathrm{xyx}^{-1}\right) \geq \min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{y}), \mathrm{w}_{\mathrm{A}}(\mathrm{x})\right\} . \tag{2}
\end{equation*}
$$

$$
r_{A}^{\prime}\left(x y x^{-1}\right) \leq S\left(r_{A}^{\prime}(x y), r_{A}^{\prime}\left(x^{-1}\right)\right)
$$

$$
\begin{aligned}
& \leq S\left(S\left(r_{A}^{\prime}(x), r_{A}(y)\right), r_{A}^{\prime}(x)\right) \\
& =S\left(S\left(r_{A}^{\prime}(x), r_{A}(x)\right), r_{A}^{\prime}(y)\right) \\
& =S\left(r_{A}^{\prime}(x), r_{A}^{\prime}(y)\right) \\
& =S\left(r_{A}^{\prime}(y), r_{A}^{\prime}(x)\right),
\end{aligned}
$$

thus

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{xyx}^{-1}\right) \leq \mathrm{S}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{y}), \mathrm{r}_{\mathrm{A}}(\mathrm{x})\right) . \\
& \mathrm{w}_{\mathrm{A}}^{\prime}\left(\mathrm{xyx}^{-1}\right) \leq \max \left\{\mathrm{w}_{\mathrm{A}}^{\prime}(\mathrm{xy}), \mathrm{w}_{\mathrm{A}}^{\prime}\left(\mathrm{x}^{-1}\right)\right\} \\
& \leq \max \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{xy}), \mathrm{w}_{\mathrm{A}}(\mathrm{x})\right\} \\
& \leq \max \left\{\min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}(\mathrm{y})\right\}, \mathrm{w}_{\mathrm{A}}(\mathrm{x})\right\} \\
& =\max \left\{\min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}(\mathrm{x})\right\}, \mathrm{w}_{\mathrm{A}}^{\prime}(\mathrm{y})\right. \\
& =\max \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{x}), \mathrm{w}_{\mathrm{A}}(\mathrm{y})\right\} \\
& =\max \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{y}), \mathrm{w}_{\mathrm{A}}(\mathrm{x})\right\},
\end{aligned}
$$

Finally,
then

$$
\begin{equation*}
\mathrm{w}_{\mathrm{A}}\left(\mathrm{xyx}^{-1}\right) \leq \min \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{y}), \mathrm{w}_{\mathrm{A}}(\mathrm{x})\right\} . \tag{4}
\end{equation*}
$$

Then Eqs. (1)-(4) give us that $A \sqsubseteq A$.

Proposition 8. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in N I F C N(G)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in I F C N(G)$ such that $\mu_{A}=r_{A} e^{i W_{A}}$ and $\vartheta_{A}(x)=r_{A}^{\prime} e^{i W_{A}}$ and $\mu_{B}=r_{B} e^{i W_{B}}$ and $\mathfrak{\vartheta}_{B}(x)=\dot{r}_{B} e^{i W_{B}}$. If T and S be idempotent, then $A \cap B \sqsubseteq B$.

Proof: As Proposition 6 we have that $A \cap B \in N I F C N(G)$. Let $x, y \in G$ then

$$
\begin{aligned}
& \left(\mathrm{r}_{\mathrm{A}} \cap \mathrm{r}_{\mathrm{B}}\right)\left(\mathrm{xyx}^{-1}\right)=\mathrm{T}\left(\left(\mathrm{r}_{\mathrm{A}}\left(\mathrm{xyx}^{-1}\right), \mathrm{r}_{\mathrm{B}}\left(\mathrm{xyx}^{-1}\right)\right)\right. \\
& =\mathrm{T}\left(\left(\mathrm{r}_{\mathrm{A}}(\mathrm{y}), \mathrm{r}_{\mathrm{B}}\left(\mathrm{xyx}^{-1}\right)\right)\right. \\
& \geq \mathrm{T}\left(\mathrm{rA}(\mathrm{y}), \mathrm{T}\left(\mathrm{r}_{\mathrm{B}}(x y), \mathrm{r}_{\mathrm{B}}\left(\mathrm{x}^{-1}\right)\right)\right. \\
& \geq \mathrm{T}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{y}), \mathrm{T}\left(\mathrm{~T}\left(\mathrm{r}_{\mathrm{B}}(\mathrm{x}), \mathrm{r}_{\mathrm{B}}(\mathrm{y})\right), \mathrm{r}_{\mathrm{B}}(\mathrm{x})\right)\right) \\
& =\mathrm{T}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{y}), \mathrm{T}\left(\mathrm{r}_{\mathrm{B}}(\mathrm{y}), \mathrm{T}\left(\mathrm{r}_{\mathrm{B}}(\mathrm{x}), \mathrm{r}_{\mathrm{B}}(\mathrm{x})\right)\right)\right) \\
& =\mathrm{T}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{y}), \mathrm{T}\left(\mathrm{r}_{\mathrm{B}}(\mathrm{y}), \mathrm{r}_{\mathrm{B}}(\mathrm{x})\right)\right) \\
& =\mathrm{T}\left(\mathrm{~T}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{y}), \mathrm{r}_{\mathrm{B}}(\mathrm{y})\right), \mathrm{r}_{\mathrm{B}}(\mathrm{x})\right) \\
& =\mathrm{T}\left(\left(\mathrm{r}_{\mathrm{A}} \cap \mathrm{r}_{\mathrm{B}}\right)(\mathrm{y}), \mathrm{r}_{\mathrm{B}}(\mathrm{x})\right),
\end{aligned}
$$

and then

$$
\begin{equation*}
\left(r_{A} \cap r_{B}\right)\left(x y x^{-1}\right) \geq T\left(\left(r_{A} \cap r_{B}\right)(y), r_{B}(x)\right) . \tag{5}
\end{equation*}
$$

Also

$$
\begin{aligned}
& \left(w_{A} \cap w_{B}\right)\left(x_{y x} x^{-1}\right)=\min \left\{\left(w_{A}\left(x y x^{-1}\right), w_{B}\left(x_{y x} x^{-1}\right)\right\}\right. \\
& =\min \left\{\left(w_{A}(y), w_{B}\left(x y x^{-1}\right)\right\}\right. \\
& \geq \min \left\{w_{A}(y), \min \left\{w_{B}(x y), w_{B}\left(x^{-1}\right)\right\}\right\} \\
& \geq \min \left\{w_{A}(y), \min \left\{\min \left\{w_{B}(x), w_{B}(y)\right\}, w_{B}(x)\right\}\right\} \\
& =\min \left\{w_{A}(y), \min \left\{w_{B}(y), \operatorname{Min}\left\{w_{B}(x), w_{B}(x)\right\}\right\}\right\} \\
& =\min \left\{w_{A}(y), \min \left\{w_{B}(y), w_{B}(x)\right\}\right\} \\
& \left.=\min \left\{\min \left\{w_{A}(y), w_{B}(y)\right\}, w_{B}(x)\right\}\right\} \\
& =\min \left\{\left(w_{A} \cap w_{B}\right)(y), w_{B}(x)\right\},
\end{aligned}
$$

then

$$
\begin{equation*}
\left(w_{A} \cap w_{B}\right)\left(x y x^{-1}\right) \geq \min \left\{\left(w_{A} \cap w_{B}\right)(y), w_{B}(x)\right\} . \tag{6}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \left(r_{A}^{\prime} \cap r_{B}^{\prime}\right)\left(x y x^{-1}\right)=S\left(\left(r_{A}^{\prime}\left(x y x^{-1}\right), r_{B}^{\prime}\left(x y x^{-1}\right)\right)\right. \\
& =S\left(\left(r_{A}^{\prime}(y), r_{B}^{\prime}\left(x y x^{-1}\right)\right)\right. \\
& \leq S\left(r_{A}^{\prime}(y), S\left(r_{B}^{\prime}(x y), r_{B}^{\prime}\left(x^{-1}\right)\right)\right. \\
& \leq S\left(r_{A}^{\prime}(y), S\left(S\left(r_{B}^{\prime}(x), r_{B}^{\prime}(y)\right), r_{B}^{\prime}(x)\right)\right) \\
& =S\left(r_{A}^{\prime}(y), S\left(r_{B}^{\prime}(y), S\left(r_{B}^{\prime}(x), r_{B}^{\prime}(x)\right)\right)\right) \\
& =S\left(r_{A}^{\prime}(y), S\left(r_{B}^{\prime}(y), r_{B}^{\prime}(x)\right)\right) \\
& =S\left(S\left(r_{A}^{\prime}(y), r_{B}^{\prime}(y)\right), r_{B}^{\prime}(x)\right) \\
& =S\left(\left(r_{A}^{\prime} \cap r_{B}^{\prime}\right)(y), r_{B}^{\prime}(x)\right),
\end{aligned}
$$

and then

$$
\begin{equation*}
\left(\mathrm{r}_{\mathrm{A}}^{\prime} \cap \mathrm{r}_{\mathrm{B}}^{\prime}\right)\left(\mathrm{xyx}^{-1}\right) \leq \mathrm{S}\left(\left(\mathrm{r}_{\mathrm{A}}^{\prime} \cap \mathrm{r}_{\mathrm{B}}^{\prime}\right)(\mathrm{y}), \mathrm{r}_{\mathrm{B}}^{\prime}(\mathrm{x})\right) . \tag{7}
\end{equation*}
$$

As

$$
\begin{aligned}
& \left(w_{A} \cap w_{B}\right)\left(x y x^{-1}\right)=\min \left\{w_{A}\left(x y x^{-1}\right), w_{B}\left(x y x^{-1}\right)\right\} \\
& =\min \left\{w_{A}(y), w_{B}\left(x^{\prime} x^{-1}\right)\right\} \\
& \geq \min \left\{w_{A}(y), \min \left\{w_{B}(x y), w_{B}\left(x^{-1}\right)\right\}\right\} \\
& \geq \min \left\{w_{A}^{\prime}(y), \min \left\{\min \left\{w_{B}(x), w_{B}(y)\right\}, w_{B}(x)\right\}\right\} \\
& =\min \left\{w_{A}^{\prime}(y), \min \left\{w_{B}^{\prime}(y), \min \left\{w_{B}^{\prime}(x), w_{B}^{\prime}(x)\right\}\right\}\right\} \\
& =\min \left\{w_{A}(y), \min \left\{w_{B}^{\prime}(y), w_{B}^{\prime}(x)\right\}\right\} \\
& \left.=\min \left\{\min \left\{w_{A}^{\prime}(y), w_{B}(y)\right\}, w_{B}^{\prime}(x)\right\}\right\} \\
& =\min \left\{\left(w_{A}^{\prime} \cap w_{B}\right)(y), w_{B}(x)\right\},
\end{aligned}
$$

then

$$
\begin{equation*}
\left(w_{\mathrm{A}}^{\prime} \cap \mathfrak{w}_{\mathrm{B}}\right)\left(\mathrm{xyx}^{-1}\right) \geq \min \left\{\left(\mathbf{w}_{\mathrm{A}} \cap \hat{w}_{\mathrm{B}}\right)(\mathrm{y}), \mathrm{w}_{\mathrm{B}}(\mathrm{x})\right\} . \tag{8}
\end{equation*}
$$

Then Eqs. (5)-(8) mean that $A \cap B \sqsubseteq B$.

Proposition 9. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(G)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in \operatorname{IFCN}(G)$ and $C=\left(\mu_{C}, \vartheta_{C}\right) \in \operatorname{IFCN}(G)$ such that $\mu_{A}=r_{A} e^{i W_{A}}$ and $\vartheta_{A}(x)=r_{A}^{\prime} e^{i W_{A}}$ and $\mu_{B}=r_{B} e^{i W_{B}}$ and $\vartheta_{B}(x)=\dot{r}_{B} e^{i W_{B}}$ and $\mu_{C}=r_{C} e^{i W_{C}}$ and $\vartheta_{C}(x)=\dot{r}_{C}^{\prime} e^{i W_{C}}$ Let T and S be idempotent and $A \sqsubseteq C$ and $B \sqsubseteq C$. Then $A \cap B \sqsubseteq C$.

Proof: From Proposition 6 we get that $A \cap B \in I C F N(G)$. Now for all $x, y \in G$ we get that

$$
\begin{aligned}
& \left(\mathrm{r}_{\mathrm{A}} \cap \mathrm{r}_{\mathrm{B}}\right)\left(\mathrm{xyx}^{-1}\right)=\mathrm{T}\left(\mathrm{r}_{\mathrm{A}}\left(\mathrm{xyx}^{-1}\right), \mathrm{r}_{\mathrm{B}}\left(\mathrm{xyx}^{-1}\right)\right) \\
& \geq \mathrm{T}\left(\mathrm{~T}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{y}), \mathrm{r}_{\mathrm{C}}(\mathrm{x})\right), \mathrm{T}\left(\mathrm{r}_{\mathrm{B}}(\mathrm{y}), \mathrm{r}_{\mathrm{C}}(\mathrm{x})\right)\right) \\
& =\mathrm{T}\left(\mathrm{~T}\left(\mathrm{rA}(\mathrm{y}), \mathrm{r}_{\mathrm{B}}(\mathrm{y})\right), \mathrm{T}\left(\mathrm{r}_{\mathrm{C}}(\mathrm{x}), \mathrm{r}_{\mathrm{C}}(\mathrm{x})\right)\right) \\
& =\mathrm{T}\left(\mathrm{~T}\left(\mathrm{r}_{\mathrm{A}}(\mathrm{y}), \mathrm{r}_{\mathrm{B}}(\mathrm{y})\right), \mathrm{r}_{\mathrm{C}}(\mathrm{x})\right) \\
& =\mathrm{T}\left(\left(\mathrm{r}_{\mathrm{A}} \cap \mathrm{r}_{\mathrm{B}}\right)(\mathrm{y}), \mathrm{r}_{\mathrm{C}}(\mathrm{x})\right),
\end{aligned}
$$

and then

$$
\begin{equation*}
\left(r_{A} \cap r_{B}\right)\left(x y x^{-1}\right) \geq T\left(\left(r_{A} \cap r_{B}\right)(y), r_{C}(x)\right) \tag{9}
\end{equation*}
$$

Also

$$
\begin{aligned}
& \left(w_{A} \cap w_{B}\right)\left(x y x^{-1}\right)=\min \left\{w_{A}\left(x y x^{-1}\right), w_{B}\left(x y x^{-1}\right)\right\} \\
& \geq \min \left\{\min \left\{w_{A}(y), w_{C}(x)\right\}, \min \left\{w_{B}(y), w_{C}(x)\right\}\right\} \\
& =\min \left\{\min \left\{w_{A}(y), w_{B}(y)\right\}, \min \left\{w_{C}(x), w_{C}(x)\right\}\right\} \\
& =\min \left\{\min \left\{w_{A}(y), w_{B}(y)\right\}, w_{C}(x)\right\} \\
& =\min \left\{\left(w_{A} \cap w_{B}\right)(y), w_{C}(x)\right),
\end{aligned}
$$

then

$$
\begin{equation*}
\left(w_{A} \cap w_{B}\right)\left(x y x^{-1}\right) \geq \min \left\{\left(w_{A} \cap w_{B}\right)(y), w_{C}(x)\right) . \tag{10}
\end{equation*}
$$

As

$$
\begin{aligned}
& \left(r_{A}^{\prime} \cap r_{B}^{\prime}\right)\left(x y x^{-1}\right)=S\left(r_{A}^{\prime}\left(x y x^{-1}\right), r_{B}^{\prime}\left(x y x^{-1}\right)\right) \\
& \leq S\left(S\left(r_{A}^{\prime}(y), r_{C}^{\prime}(x)\right), S\left(r_{B}^{\prime}(y), r_{C}^{\prime}(x)\right)\right) \\
& =S\left(S\left(r_{A}^{\prime}(y), r_{B}^{\prime}(y)\right), S\left(r_{C}^{\prime}(x), r_{C}^{\prime}(x)\right)\right) \\
& =S\left(S\left(r_{A}^{\prime}(y), r_{B}^{\prime}(y)\right), r_{C}^{\prime}(x)\right) \\
& =S\left(\left(r_{A}^{\prime} \cap r_{B}^{\prime}\right)(y), r_{C}^{\prime}(x)\right),
\end{aligned}
$$

so

$$
\begin{equation*}
\left(\mathrm{r}_{\mathrm{A}}^{\prime} \cap \mathrm{r}_{\mathrm{B}}^{\prime}\right)\left(\mathrm{xyx}^{-1}\right) \leq \mathrm{S}\left(\left(\mathrm{r}_{\mathrm{A}}^{\prime} \cap \mathrm{r}_{\mathrm{B}}^{\prime}\right)(\mathrm{y}), \mathrm{r}_{\mathrm{C}}^{\prime}(\mathrm{x})\right) . \tag{11}
\end{equation*}
$$

Since

$$
\begin{aligned}
& \left(w_{A} \cap w_{B}\right)\left(x y x^{-1}\right)=\max \left\{w_{A}\left(x^{\prime} x^{-1}\right), w_{B}\left(x y x^{-1}\right)\right\} \\
& \leq \max \left\{\max \left\{w_{\mathrm{A}}(\mathrm{y}), \mathbf{w}_{\mathrm{C}}(\mathrm{x})\right\}, \max \left\{\mathbf{w}_{\mathrm{B}}(\mathrm{y}), \mathbf{w}_{\mathrm{C}}(\mathrm{x})\right\}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.w_{C}(x)\right\} \\
& =\max \left\{\left(w_{\mathrm{A}} \cap \mathfrak{w}_{\mathrm{B}}\right)(\mathrm{y}), \mathrm{w}_{\mathrm{C}}(\mathrm{x})\right) \text {. }
\end{aligned}
$$

then

$$
\begin{equation*}
\left(w_{A}^{\prime} \cap w_{B}\right)\left(x y x^{-1}\right) \leq \max \left\{\left(w_{A}^{\prime} \cap w_{B}\right)(y), w_{C}^{\prime}(x)\right) . \tag{13}
\end{equation*}
$$

Then as Eqs. (9)-(13) we get that $A \cap B \sqsubseteq C$.

Corollary 4. Let $I_{n}=\{1,2, \ldots, n\}$. If $\left\{A_{i}=\left(\mu_{A_{i}}, \vartheta_{A_{i}}\right) / i \in I_{n}\right\} \subseteq I F C N(G)$ such that $\left\{A_{i}=\left(\mu_{A_{i}}, \vartheta_{A_{i}}\right) / i \in\right.$ $\left.I_{n}\right\} \sqsubseteq B=\left(\mu_{B}, \vartheta_{B}\right)$. Then $A=\bigcap_{i \in I_{n}} A_{i} \sqsubseteq B=\left(\mu_{B}, \vartheta_{B}\right)$.

6 | Group Homomorphisms and IFCN(G)

Definition 16. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(G)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in \operatorname{IFCN}(H)$ such that $\mu_{A}=r_{A} e^{i W_{A}}$ and $\vartheta_{A}(x)=r_{A}^{\prime} e^{i W_{A}}$ and $\mu_{B}=r_{B} e^{i W_{B}}$ and $\vartheta_{\mathrm{B}}(\mathrm{x})=\mathrm{r}_{\mathrm{B}}^{\prime} \mathrm{e}^{\mathrm{i} \hat{w}_{\mathrm{B}}}$.

Let $\varphi: G \rightarrow H$ be a group homomorphism. Define:

$$
\left.\left.\varphi(\mathrm{A})=\left(\varphi\left(\mu_{\mathrm{A}}\right), \varphi\left(\vartheta_{\mathrm{A}}\right)\right)=\left(\varphi\left(\mathrm{r}_{\mathrm{A}} \mathrm{e}^{\mathrm{i} w_{\mathrm{A}}}\right), \varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime} \mathrm{e}^{\mathrm{i} \mathrm{w}_{\mathrm{A}}}\right)\right)=\left(\varphi\left(\mathrm{r}_{\mathrm{A}}\right) \mathrm{e}^{\mathrm{i} \varphi\left(\mathrm{w}_{\mathrm{A}}\right)}\right), \varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right) \mathrm{e}^{\mathrm{i} \varphi\left(\mathrm{w}_{\mathrm{A}}\right)}\right)\right) .
$$

For all $h \in H$ define:

$$
\begin{aligned}
& \varphi\left(\mathrm{r}_{\mathrm{A}}\right): \mathrm{H} \rightarrow[0,1] \text { as } \varphi\left(\mathrm{r}_{\mathrm{A}}\right)(\mathrm{h})=\sup \left\{\mathrm{r}_{\mathrm{A}}(\mathrm{~g}) \mid \mathrm{g} \in \mathrm{G}, \varphi(\mathrm{~g})=\mathrm{h}\right\},
\end{aligned}
$$

$$
\begin{aligned}
& \varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right): \mathrm{H} \rightarrow[0,1] \text { as } \varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)(\mathrm{h})=\inf \left\{\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{g}) \mid \mathrm{g} \in \mathrm{G}, \varphi(\mathrm{~g})=\mathrm{h}\right\} \text {, } \\
& \varphi\left(w_{A}\right): H \rightarrow[0,2 \pi] \text { as } \varphi\left(w_{A}\right)(h)=\inf \left\{w_{A}(g) \mid g \in G, \varphi(g)=\mathrm{h}\right\} .
\end{aligned}
$$

nd

Also define

$$
\begin{aligned}
& \varphi^{-1}(\mathrm{~B})=\left(\varphi^{-1}\left(\mu_{\mathrm{B}}\right), \varphi^{-1}\left(\vartheta_{\mathrm{B}}\right)\right)=\left(\varphi^{-1}\left(\mathrm{r}_{\mathrm{B}} \mathrm{e}^{\mathrm{i} w_{\mathrm{B}}}\right), \varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}^{\prime} \mathrm{e}^{\mathrm{i} w_{\mathrm{B}}}\right)\right)= \\
& \left.\left.\left(\varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}\right) \mathrm{e}^{\mathrm{i} \varphi^{-1}\left(w_{B}\right)}\right), \varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}^{\prime}\right) \mathrm{e}^{\mathrm{i} \varphi^{-1}\left(w_{\mathrm{B}}\right)}\right)\right),
\end{aligned}
$$

such that for all $g \in G$:

$$
\begin{aligned}
& \varphi^{-1}\left(r_{\mathrm{B}}\right): \mathrm{G} \rightarrow[0,1] \text { as } \varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}\right)(\mathrm{g})=\mathrm{r}_{\mathrm{B}}(\varphi(\mathrm{~g})), \\
& \varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}^{\prime}\right): \mathrm{G} \rightarrow[0,1] \text { as } \varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}^{\prime}\right)(\mathrm{g})=\mathrm{r}_{\mathrm{B}}^{\prime}(\varphi(\mathrm{g})), \\
& \varphi^{-1}\left(\mathrm{w}_{\mathrm{B}}\right): \mathrm{G} \rightarrow[0,2 \pi] \text { as } \varphi^{-1}\left(\mathrm{w}_{\mathrm{B}}\right)(\mathrm{g})=\mathrm{w}_{\mathrm{B}}(\varphi(\mathrm{~g})), \\
& \varphi^{-1}\left(\mathrm{w}_{\mathrm{B}}\right): \mathrm{G} \rightarrow[0,2 \pi] \text { as } \varphi^{-1}\left(\mathrm{w}_{\mathrm{B}}\right)(\mathrm{g})=\mathrm{w}_{\mathrm{B}}(\varphi(\mathrm{~g})) .
\end{aligned}
$$

Proposition 10. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in I F C N(G)$ and H be a group. Suppose that $\varphi: G \rightarrow H$ is a group homomorphism. Then $\varphi(A) \in \operatorname{IFCN}(H)$.

Proof: Let $\left.\left.\varphi(A)=\left(\varphi\left(\mu_{A}\right), \varphi\left(\vartheta_{A}\right)\right)=\left(\varphi\left(r_{A}\right) e^{i \varphi\left(\omega_{A}\right)}\right), \varphi\left(r_{A}^{\prime}\right) e^{i \varphi\left(\omega_{A}^{\prime}\right)}\right)\right)$ and $h_{1}, h_{2} \in H$ and $g_{1}, g_{2} \in G$ such that $\varphi\left(g_{1}\right)=h_{1}$ and $\varphi\left(g_{2}\right)=h_{2}$. Then

$$
\varphi\left(\mathrm{r}_{\mathrm{A}}\right)\left(\mathrm{h}_{1} \mathrm{~h}_{2}\right)=\sup \left\{\mathrm{r}_{\mathrm{A}}\left(\mathrm{~g}_{1} \mathrm{~g}_{2}\right) \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right), \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\}
$$

$\geq \sup \left\{T\left(\mathrm{r}_{\mathrm{A}}\left(\mathrm{g}_{1}\right), \mathrm{rA}\left(\mathrm{g}_{2}\right)\right) \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right), \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\}$
$=T\left(\sup \left\{\mathrm{r}_{\mathrm{A}}\left(\mathrm{g}_{1}\right) \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right)\right\}, \sup \left\{\mathrm{r}_{\mathrm{A}}\left(\mathrm{g}_{2}\right) \mid \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\}\right)$
$=\mathrm{T}\left(\varphi\left(\mathrm{r}_{\mathrm{A}}\right)\left(\mathrm{h}_{1}\right), \varphi\left(\mathrm{r}_{\mathrm{A}}\right)\left(\mathrm{h}_{2}\right)\right)$,
and so

$$
\begin{equation*}
\varphi\left(\mathrm{r}_{\mathrm{A}}\right)\left(\mathrm{h}_{1} \mathrm{~h}_{2}\right) \geq \mathrm{T}\left(\varphi\left(\mathrm{r}_{\mathrm{A}}\right)\left(\mathrm{h}_{1}\right), \varphi\left(\mathrm{r}_{\mathrm{A}}\right)\left(\mathrm{h}_{2}\right)\right) . \tag{14}
\end{equation*}
$$

Let $g \in G$ and $h \in H$ such that $\varphi(g)=h$. Then

$$
\begin{aligned}
& \varphi\left(r_{A}\right)\left(\mathrm{h}^{-1}\right)=\sup \left\{\mathrm{r}_{\mathrm{A}}\left(\mathrm{~g}^{-1}\right) \mid \mathrm{g}^{-1} \in \mathrm{G}, \varphi\left(\mathrm{~g}^{-1}\right)=\mathrm{h}^{-1}\right\} \\
& \geq \sup \left\{\mathrm{rA}(\mathrm{~g}) \mid \mathrm{g}^{-1} \in \mathrm{G}, \varphi^{-1}(\mathrm{~g})=\mathrm{h}^{-1}\right\} \\
& =\sup \{\mathrm{rA}(\mathrm{~g}) \mid \mathrm{g} \in \mathrm{G}, \varphi(\mathrm{~g})=\mathrm{h}\} \\
& =\varphi(\mathrm{rA})(\mathrm{h}),
\end{aligned}
$$

and then

$$
\begin{equation*}
\varphi\left(\mathrm{r}_{\mathrm{A}}\right)\left(\mathrm{h}^{-1}\right) \geq \varphi\left(\mathrm{r}_{\mathrm{A}}\right)(\mathrm{h}) . \tag{15}
\end{equation*}
$$

Let $h_{1}, h_{2} \in H$ and $g_{1}, g_{2} \in G$ with $\varphi\left(g_{1}\right)=h_{1}$ and $\varphi\left(g_{2}\right)=h_{2}$. Then

$$
\begin{aligned}
& \varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1} \mathrm{~h}_{2}\right)=\sup \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{~g}_{1} \mathrm{~g}_{2}\right) \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right), \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\} \\
& \geq \sup \left\{\min \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{~g}_{1}\right), \mathrm{w}_{\mathrm{A}}\left(\mathrm{~g}_{2}\right)\right\} \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right), \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\} \\
& =\min \left\{\sup \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{~g}_{1}\right) \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right)\right\}, \sup \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{~g}_{2}\right) \mid \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\}\right\} \\
& =\min \left\{\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1}\right), \varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{2}\right)\right\},
\end{aligned}
$$

and so

$$
\begin{equation*}
\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1} \mathrm{~h}_{2}\right) \geq \min \left\{\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1}\right), \varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{2}\right)\right\} . \tag{16}
\end{equation*}
$$

Let $g \in G$ and $h \in H$ such that $\varphi(g)=h$. Then

$$
\begin{aligned}
& \varphi\left(w_{A}\right)\left(h^{-1}\right)=\sup \left\{w_{A}\left(g^{-1}\right) \mid g^{-1} \in G, \varphi\left(g^{-1}\right)=h^{-1}\right\} \\
& \geq \sup \left\{w_{A}(g) \mid g^{-1} \in G, \varphi^{-1}(g)=h^{-1}\right\} \\
& =\sup \left\{w_{A}(g) \mid g \in G, \varphi(g)=h\right\}=\varphi\left(w_{A}\right)(h),
\end{aligned}
$$

then
$\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1} \mathrm{~h}_{2}\right) \geq \min \left\{\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1}\right), \varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{2}\right)\right\}$.
et $h_{1}, h_{2} \in H$ and $g_{1}, g_{2} \in G$ with $\varphi\left(g_{1}\right)=h_{1}$ and $\varphi\left(g_{2}\right)=h_{2}$. Then
$\varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)\left(\mathrm{h}_{1} \mathrm{~h}_{2}\right)=\inf \left\{\mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right) \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right), \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\}$
$\leq \inf \left\{T\left(\mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{g}_{1}\right), \mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{g}_{2}\right)\right) \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right), \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\}$
$=S\left(\inf \left\{r_{\mathrm{A}}^{\prime}\left(\mathrm{g}_{1}\right) \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right)\right\}, \inf \left\{\mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{g}_{2}\right) \mid \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\}\right)$
$=S\left(\varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)\left(\mathrm{h}_{1}\right), \varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)\left(\mathrm{h}_{2}\right)\right)$,
then
$\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1} \mathrm{~h}_{2}\right) \geq \min \left\{\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1}\right), \varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{2}\right)\right\}$.
Let $h_{1}, h_{2} \in H$ and $g_{1}, g_{2} \in G$ with $\varphi\left(g_{1}\right)=h_{1}$ and $\varphi\left(g_{2}\right)=h_{2}$. Then

$$
\begin{aligned}
& \varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)\left(\mathrm{h}_{1} \mathrm{~h}_{2}\right)=\inf \left\{\mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right) \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right), \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\} \\
& \leq \inf \left\{\mathrm{T}\left(\mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{g}_{1}\right), \mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{g}_{2}\right)\right) \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right), \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\} \\
& =\mathrm{S}\left(\inf \left\{\mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{g}_{1}\right) \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right)\right\}, \inf \left\{\mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{g}_{2}\right) \mid \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\}\right) \\
& =\mathrm{S}\left(\varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)\left(\mathrm{h}_{1}\right), \varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)\left(\mathrm{h}_{2}\right)\right),
\end{aligned}
$$

and so

$$
\begin{equation*}
\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1} \mathrm{~h}_{2}\right) \geq \min \left\{\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1}\right), \varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{2}\right)\right\} . \tag{19}
\end{equation*}
$$

Let ϵG and $h \in H$ such that $\varphi(g)=h$. Then

```
\(\varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)\left(\mathrm{h}^{-1}\right)=\inf \left\{\mathrm{r}_{\mathrm{A}}^{\prime}\left(\mathrm{g}^{-1}\right) \mid \mathrm{g}^{-1} \in \mathrm{G}, \varphi\left(\mathrm{g}^{-1}\right)=\mathrm{h}^{-1}\right\}\)
\(\leq \inf \left\{\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{g}) \mid \mathrm{g}^{-1} \in \mathrm{G}, \varphi^{-1}(\mathrm{~g})=\mathrm{h}^{-1}\right\}\)
\(=\inf \left\{r_{A}^{\prime}(g) \mid g \in G, \varphi(g)=h\right\}\)
\(=\varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)(\mathrm{h})\),
```

and then
$\varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)\left(\mathrm{h}^{-1}\right) \leq \varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)(\mathrm{h})$.
Let $h_{1}, h_{2} \in H$ and $g_{1}, g_{2} \in G$ with $\varphi\left(g_{1}\right)=h_{1}$ and $\varphi\left(g_{2}\right)=h_{2}$. Then

$$
\begin{aligned}
& \varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1} \mathrm{~h}_{2}\right)=\inf \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{~g}_{1} \mathrm{~g}_{2}\right) \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right), \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\} \\
& \leq \inf \left\{\max \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{~g}_{1}\right), \mathrm{w}_{\mathrm{A}}\left(\mathrm{~g}_{2}\right)\right\} \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right), \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\} \\
& =\max \left\{\inf \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{~g}_{1}\right) \mid \mathrm{g}_{1}=\varphi\left(\mathrm{h}_{1}\right)\right\}, \inf \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{~g}_{2}\right) \mid \mathrm{g}_{2}=\varphi\left(\mathrm{h}_{2}\right)\right\}\right\} \\
& =\max \left\{\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1}\right), \varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{2}\right)\right\},
\end{aligned}
$$

and so
$\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1} \mathrm{~h}_{2}\right) \leq \max \left\{\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{1}\right), \varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}_{2}\right)\right\}$.
Let $g \in G$ and $h \in H$ such that $\varphi(g)=h$. Then

```
\(\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}^{-1}\right)=\inf \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{g}^{-1}\right) \mid \mathrm{g}^{-1} \in \mathrm{G}, \varphi\left(\mathrm{g}^{-1}\right)=\mathrm{h}^{-1}\right\}\)
\(\leq \inf \left\{w_{A}(g) \mid g^{-1} \in G, \varphi^{-1}(g)=h^{-1}\right\}\)
\(=\inf \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{g}) \mid \mathrm{g} \in \mathrm{G}, \varphi(\mathrm{g})=\mathrm{h}\right\}\)
\(=\varphi\left(\mathrm{w}_{\mathrm{A}}\right)(\mathrm{h})\),
```

then

$$
\begin{equation*}
\varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{h}^{-1}\right) \leq \varphi\left(\mathrm{w}_{\mathrm{A}}\right)(\mathrm{h}) . \tag{22}
\end{equation*}
$$

Therefore from Eqs. (14)-(22) we get that $\varphi(A) \in I C F N(H)$.

Proposition 11. Let H be a group and $B=\left(\mu_{B}, \vartheta_{B}\right) \in I F C N(H)$ and $\varphi: G \rightarrow H$ is a group homomorphism. Then $\varphi^{-1}(B) \in \operatorname{IFCN}(G)$.

Proof: Let $B=\left(\mu_{B}, \vartheta_{B}\right) \in I F C N(H)$ such that $\mu_{B}=r_{B} e^{i w_{B}}$ and $\vartheta_{B}(x)=\hat{r}_{B} e^{i e_{B}}$ and $\varphi^{-1}(B)=\left(\varphi^{-1}\left(r_{B}\right) e^{i \varphi^{-1}\left(w_{B}\right)}\right)$, $\left.\left.\varphi^{-1}\left(\tilde{r}_{B}\right) e^{i \varphi^{-1}\left(\tilde{\omega}_{B}\right)}\right)\right)$. Let $g_{1}, g_{2} \in G$. Then

$$
\begin{align*}
& \varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}\right)\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right)=\mathrm{r}_{\mathrm{B}}\left(\varphi\left(\mathrm{~g}_{1} \mathrm{~g}_{2}\right)\right) \\
& =\mathrm{r}_{\mathrm{B}}\left(\varphi\left(\mathrm{~g}_{1}\right) \varphi\left(\mathrm{g}_{2}\right)\right) \\
& \geq \mathrm{T}\left(\mathrm{r}_{\mathrm{B}}\left(\varphi\left(\mathrm{~g}_{1}\right)\right), \mathrm{r}_{\mathrm{B}}\left(\varphi\left(\mathrm{~g}_{2}\right)\right)\right) \tag{23}\\
& =\mathrm{T}\left(\varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}\right)\left(\mathrm{g}_{1}\right), \varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}\right)\left(\mathrm{g}_{2}\right)\right),
\end{align*}
$$

and so $\varphi^{-1}\left(r_{B}\right)\left(g_{1} g_{2}\right) \geq T\left(\varphi^{-1}\left(r_{B}\right)\left(g_{1}\right), \varphi^{-1}\left(r_{B}\right)\left(g_{2}\right)\right)$.

$$
\begin{align*}
& \varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}^{\prime}\right)\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right)==_{\mathrm{B}}^{\prime}\left(\varphi\left(\mathrm{g}_{1} \mathrm{~g}_{2}\right)\right) \\
& =\mathrm{r}_{\mathrm{B}}^{\prime}\left(\varphi\left(\mathrm{g}_{1}\right) \varphi\left(\mathrm{g}_{2}\right)\right) \\
& \leq \mathrm{T}\left(\mathrm{r}_{\mathrm{B}}^{\prime}\left(\varphi\left(\mathrm{g}_{1}\right)\right), \mathrm{r}_{\mathrm{B}}^{\prime}\left(\varphi\left(\mathrm{g}_{2}\right)\right)\right) \tag{24}\\
& =\mathrm{T}\left(\varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}^{\prime}\right)\left(\mathrm{g}_{1}\right), \varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}^{\prime}\right)\left(\mathrm{g}_{2}\right)\right),
\end{align*}
$$

Let $g \in G$.
Thus Eqs. (23)-(30) give us that $\varphi^{-1}(B) \in \operatorname{ICFN}(G)$.
Proposition 12. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{NIFCN}(G)$ and H be a group. Suppose that $\varphi: G \rightarrow H$ is a homomorphism. Then $\varphi(A) \in \operatorname{NIFCN}(H)$.

Proof: Using Proposition 10, we give that $\varphi(A) \in I F C N(H)$. Let $x, y \in H$ such that $\varphi(u)=x$ and $\varphi(w)=y$ with $u, w \in G$. Then

$$
\begin{aligned}
& \quad \varphi\left(\mathrm{r}_{\mathrm{A}}\left(\mathrm{xyx}^{-1}\right)\right)=\sup \left\{\mathrm{r}_{\mathrm{A}}(\mathrm{w}) \mid \mathrm{w} \in \mathrm{G}, \varphi(\mathrm{w})=\mathrm{xyx}^{-1}\right\} \\
& =\sup \left\{\mathrm{r}_{\mathrm{A}}(\mathrm{w}) \mid \mathrm{w} \in \mathrm{G}, \varphi(\mathrm{w})=\varphi(\mathrm{u}) \varphi(\mathrm{w}) \varphi\left(\mathrm{u}^{-1}\right)\right\} \\
& =\sup \left\{\mathrm{r}_{\mathrm{A}}(\mathrm{w}) \mid \mathrm{w} \in \mathrm{G}, \varphi(\mathrm{w})=\varphi\left(\mathrm{uwu}^{-1}\right)\right\} \\
& =\sup \left\{\mathrm{r}_{\mathrm{A}}\left(\mathrm{uwu} \mathrm{u}^{-1}\right) \mid \mathrm{w} \in \mathrm{G}, \varphi\left(\mathrm{uwu}^{-1}\right)=\mathrm{y}\right\} \\
& =\sup \left\{\mathrm{r}_{\mathrm{A}}(\mathrm{w}) \mid \mathrm{w} \in \mathrm{G}, \varphi(\mathrm{w})=\mathrm{y}\right\} \\
& =\varphi\left(\mathrm{r}_{\mathrm{A}}(\mathrm{y})\right), \\
& \text { so } \varphi\left(r_{A}\left(x y x^{-1}\right)\right)=\varphi\left(r_{A}(y)\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \varphi\left(\mathrm{w}_{\mathrm{A}}\left(\mathrm{xyx}^{-1}\right)\right)=\sup \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{w}) \mid \mathrm{w} \in \mathrm{G}, \varphi(\mathrm{w})=\mathrm{xyx}^{-1}\right\} \\
& =\sup \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{w}) \mid \mathrm{w} \in \mathrm{G}, \varphi(\mathrm{w})=\varphi(\mathrm{u}) \varphi(\mathrm{w}) \varphi\left(\mathrm{u}^{-1}\right)\right\} \\
& =\sup \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{w}) \mid \mathrm{w} \in \mathrm{G}, \varphi(\mathrm{w})=\varphi\left(\mathrm{uwu}^{-1}\right)\right\} \\
& =\sup \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{uwu}^{-1}\right) \mid \mathrm{w} \in \mathrm{G}, \varphi\left(\mathrm{uwu}^{-1}\right)=y\right\} \\
& =\sup \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{w}) \mid \mathrm{w} \in \mathrm{G}, \varphi(\mathrm{w})=\mathrm{y}\right\} \\
& =\varphi\left(\mathrm{w}_{\mathrm{A}}(\mathrm{y})\right),
\end{aligned}
$$

then $\varphi\left(w_{A}\left(x y x^{-1}\right)\right)=\varphi\left(w_{A}(y)\right)$.

$$
\begin{align*}
& \varphi\left(r_{A}^{\prime}\left(x y x^{-1}\right)\right)=\inf \left\{r_{A}^{\prime}(w) \mid w \in G, \varphi(w)=x y x^{-1}\right\} \\
& =\inf \left\{\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{w}) \mid \mathrm{w} \in \mathrm{G}, \varphi(\mathrm{w})=\varphi(\mathrm{u}) \varphi(\mathrm{w}) \varphi\left(\mathrm{u}^{-1}\right)\right\} \\
& =\inf \left\{r_{A}^{\prime}(w) \mid w \in G, \varphi(w)=\varphi\left(u_{w} u^{-1}\right)\right\} \tag{33}\\
& =\inf \left\{r_{A}^{\prime}\left(u w u^{-1}\right) \mid w \in G, \varphi\left(u w u^{-1}\right)=y\right\} \\
& =\inf \left\{r_{\text {A }}^{\prime}(w) \mid w \in G, \varphi(w)=y\right\} \\
& =\varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{y})\right) \text {, } \\
& \text { then } \varphi\left(r_{A}^{\prime}\left(x y x^{-1}\right)\right)=\varphi\left(r_{A}^{\prime}(y)\right) \text {. } \\
& \varphi\left(w_{A}\left(x^{\prime} x^{-1}\right)\right)=\inf \left\{w_{A}(w) \mid w \in G, \varphi(w)=x y x^{-1}\right\} \\
& =\inf \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{w}) \mid \mathrm{w} \in \mathrm{G}, \varphi(\mathrm{w})=\varphi(\mathrm{u}) \varphi(\mathrm{w}) \varphi\left(\mathrm{u}^{-1}\right)\right\} \\
& =\inf \left\{w_{A}^{\prime}(w) \mid w \in G, \varphi(w)=\varphi\left(\mathrm{uwu}^{-1}\right)\right\} \tag{34}\\
& =\inf \left\{w_{A}\left(\mathrm{uwn}^{-1}\right) \mid w \in \mathrm{G}, \varphi\left(\mathrm{uwu}^{-1}\right)=\mathrm{y}\right\} \\
& =\inf \left\{w_{A}(w) \mid w \in G, \varphi(w)=y\right\} \\
& =\varphi\left(w_{A}^{\prime}(y)\right) \text {, }
\end{align*}
$$

then $\varphi\left(\dot{w}_{A}\left(x y x^{-1}\right)\right)=\varphi\left(\dot{w}_{A}(y)\right)$.

Thus for all $x, y \in H$ and from Eqs. (31)-(34) we get that

$$
\begin{aligned}
& \varphi(\mathrm{A})\left(\mathrm{xyx}^{-1}\right)=\left(\varphi\left(\mu_{\mathrm{A}}\right)\left(\mathrm{xyx}^{-1}\right), \varphi\left(\vartheta_{\mathrm{A}}\right)\left(\mathrm{xyx}^{-1}\right)\right) \\
& \left.=\left(\varphi\left(\mathrm{r}_{\mathrm{A}}\right)\left(\mathrm{xyx}^{-1}\right)\right) \mathrm{e}^{\mathrm{i} \varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(x \mathrm{xx}^{-1}\right)}, \varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)\left(\mathrm{xyx}^{-1}\right) \mathrm{e}^{\mathrm{i} \varphi\left(\mathrm{w}_{\mathrm{A}}^{\prime}\right)\left(\mathrm{xyx}^{-1}\right)}\right) \\
& \left.=\left(\varphi\left(\mathrm{r}_{\mathrm{A}}\right)(\mathrm{y})\right) \mathrm{e}^{\mathrm{i} \varphi\left(\mathrm{w}_{\mathrm{A}}\right)(\mathrm{y})}, \varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)(\mathrm{y}) \mathrm{e}^{\mathrm{i} \varphi\left(\mathrm{w}_{\mathrm{A}}^{\prime}\right)(\mathrm{y})}\right) \\
& =\left(\varphi\left(\mu_{\mathrm{A}}\right)(\mathrm{y}), \varphi\left(\vartheta_{\mathrm{A}}\right)(\mathrm{y})\right) \\
& =\varphi(\mathrm{A})(\mathrm{y}),
\end{aligned}
$$

Then $\varphi(A) \in N I C F N(H)$.

Proposition 13. Let H be a commutative group and $B=\left(\mu_{B}, \vartheta_{B}\right) \in N I F C N(H)$. If $\varphi: G \rightarrow H$ be a group homomorphism, then $\varphi^{-1}(B) \in N I F C N(G)$.

Proof: From Proposition 11, we get that $\varphi^{-1}(B) \in \operatorname{IFCN}(G)$. Let $x, y \in G$ then

$$
\begin{align*}
& \varphi^{-1}\left(r_{B}\right)\left(x y x^{-1}\right)=r_{B}\left(\varphi\left(x y x^{-1}\right)\right) \\
& =r_{B}\left(\varphi(x) \varphi(y) \varphi\left(x^{-1}\right)\right) \\
& =r_{B}\left(\varphi(x) \varphi(y) \varphi^{-1}(x)\right) \tag{3}\\
& =r_{B}(\varphi(y)) \\
& =\varphi^{-1}\left(r_{B}\right)(y),
\end{align*}
$$

$$
=\mathrm{w}_{\mathrm{B}}\left(\varphi(\mathrm{x}) \varphi(\mathrm{y}) \varphi\left(\mathrm{x}^{-1}\right)\right)
$$

$$
\begin{equation*}
=\mathrm{w}_{\mathrm{B}}\left(\varphi(\mathrm{x}) \varphi(\mathrm{y}) \varphi^{-1}(\mathrm{x})\right) \tag{36}
\end{equation*}
$$

$$
=\mathrm{w}_{\mathrm{B}}(\varphi(\mathrm{y}))
$$

$$
=\varphi^{-1}\left(\mathrm{w}_{\mathrm{B}}\right)(\mathrm{y}),
$$

and thus $\varphi^{-1}\left(r_{B}\right)\left(x y x^{-1}\right)=\varphi^{-1}\left(r_{B}\right)(y)$.

$$
\varphi^{-1}\left(\mathrm{w}_{\mathrm{B}}\right)\left(\mathrm{xyx}^{-1}\right)=\mathrm{w}_{\mathrm{B}}\left(\varphi\left(\mathrm{xyx}^{-1}\right)\right)
$$

so $\varphi^{-1}\left(w_{B}\right)\left(x y x^{-1}\right)=\varphi^{-1}\left(w_{B}\right)(y)$.

$$
\begin{align*}
& \varphi^{-1}\left(r_{B}^{\prime}\right)\left(x_{y} x^{-1}\right)=r_{B}^{\prime}\left(\varphi\left(x y x^{-1}\right)\right) \\
& =r_{B}^{\prime}\left(\varphi(x) \varphi(y) \varphi\left(x^{-1}\right)\right) \\
& =r_{B}^{\prime}\left(\varphi(x) \varphi(y) \varphi^{-1}(x)\right) \tag{37}\\
& =r_{B}^{\prime}(\varphi(y)) \\
& =\varphi^{-1}\left(r_{B}^{\prime}\right)(y),
\end{align*}
$$

then $\varphi^{-1}\left(\dot{r}_{B}^{\prime}\right)\left(x y x^{-1}\right)=\varphi^{-1}\left(\dot{r}_{B}^{\prime}\right)(y)$

```
\(\varphi^{-1}\left(w_{\mathrm{B}}\right)\left(\mathrm{xyx}^{-1}\right)=\mathrm{w}_{\mathrm{B}}\left(\varphi\left(\mathrm{xyx}^{-1}\right)\right)\)
\(=W_{\mathrm{B}}\left(\varphi(\mathrm{x}) \varphi(\mathrm{y}) \varphi\left(\mathrm{x}^{-1}\right)\right)\)
\(=\mathbf{w}_{\mathrm{B}}\left(\varphi(\mathrm{x}) \varphi(\mathrm{y}) \varphi^{-1}(\mathrm{x})\right)\)
\(=\mathbf{w}_{\mathrm{B}}(\varphi(\mathrm{y}))\)
\(=\varphi^{-1}\left(\mathrm{w}_{\mathrm{B}}\right)(\mathrm{y})\).
```

thus $\left(\tilde{w}_{B}\right)\left(x y x^{-1}\right)=\varphi^{-1}\left(\tilde{w}_{B}\right)(y)$. Therefore Eqs. (35)-(38) give us that
$\varphi^{-1}\left(r_{B}^{\prime}\right)\left(x y x^{-1}\right)=r_{\mathrm{B}}^{\prime}\left(\varphi\left(\mathrm{xyx}^{-1}\right)\right)$
$=r_{B}^{\prime}\left(\varphi(x) \varphi(y) \varphi\left(x^{-1}\right)\right)$
$=r_{\mathrm{B}}^{\prime}\left(\varphi(\mathrm{x}) \varphi(\mathrm{y}) \varphi^{-1}(\mathrm{x})\right)$
$=r_{\mathrm{B}}^{\prime}(\varphi(\mathrm{y}))$
$=\varphi^{-1}\left(r_{B}^{\prime}\right)(y)$,
Thus $\varphi^{-1}(B) \in \operatorname{NIFCN}(G)$.

Proposition 14. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(G)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in I F C N(G)$ such that $A \sqsubseteq B$.

If $\varphi: G \rightarrow H$ is a group homomorphism, then $\varphi(A) \sqsubseteq \varphi(B)$.

Proof: Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(G)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in \operatorname{IFCN}(G)$ such that $\mu_{A}=r_{A} e^{i w_{A}}$ and $\vartheta_{A}(x)=r_{A}^{\prime} e^{i W_{A}}$ and $\mu_{B}=r_{B} e^{i W_{B}}$ and $\vartheta_{B}(x)=\hat{r}_{B}^{\prime} e^{i W_{B}}$. Using Proposition 10. we will have that

$$
\left.\left.\varphi(\mathrm{A})=\left(\varphi\left(\mu_{\mathrm{A}}\right), \varphi\left(\vartheta_{\mathrm{A}}\right)\right)=\left(\varphi\left(\mathrm{r}_{\mathrm{A}}\right) \mathrm{e}^{\mathrm{i} \varphi\left(\mathrm{w}_{\mathrm{A}}\right)}\right), \varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right) \mathrm{e}^{\mathrm{i} \varphi\left(\mathrm{w}_{\mathrm{A}}^{\prime}\right)}\right)\right) \in \operatorname{ICFN}(\mathrm{H})
$$

And

$$
\left.\left.\varphi(\mathrm{B})=\left(\varphi\left(\mu_{\mathrm{B}}\right), \varphi\left(\vartheta_{\mathrm{B}}\right)\right)=\left(\varphi\left(\mathrm{r}_{\mathrm{B}}\right) \mathrm{e}^{\mathrm{i} \varphi\left(\mathrm{w}_{\mathrm{B})}\right)}\right), \varphi\left(\mathrm{r}_{\mathrm{B}}^{\prime}\right) \mathrm{e}^{\mathrm{i} \varphi\left(\mathrm{w}_{\mathrm{B}}\right)}\right)\right) \in \operatorname{ICFN}(\mathrm{H}) .
$$

$$
\begin{align*}
& \varphi\left(\mathrm{r}_{\mathrm{A}}\right)\left(\mathrm{xyx}^{-1}\right)=\sup \left\{\mathrm{r}_{\mathrm{A}}(\mathrm{z}) \mid \mathrm{z} \in \mathrm{G}, \varphi(\mathrm{z})=\mathrm{xyx}^{-1}\right\} \\
& =\sup \left\{\mathrm{r}_{\mathrm{A}}\left(\mathrm{uvu}^{-1}\right) \mid \mathrm{u}, \mathrm{v} \in \mathrm{G}, \varphi(\mathrm{u}) \mathrm{x}, \varphi(\mathrm{v})=\mathrm{y}\right\} \\
& \geq \sup \left\{\mathrm{T}\left(\mathrm{rA}(\mathrm{v}), \mathrm{r}_{\mathrm{B}}(\mathrm{u})\right) \mid \varphi(\mathrm{u}) \mathrm{x}, \varphi(\mathrm{v})=\mathrm{y}\right\} \tag{39}\\
& =\mathrm{T}\left(\sup \left\{\mathrm{r}_{\mathrm{A}}(\mathrm{v}) \mid \mathrm{y}=\varphi(\mathrm{v})\right\}, \sup \left\{\mathrm{r}_{\mathrm{B}}(\mathrm{u}) \mid \mathrm{x}=\varphi(\mathrm{u})\right\}\right) \\
& =\mathrm{T}\left(\varphi\left(\mathrm{r}_{\mathrm{A}}\right)(\mathrm{y}), \varphi\left(\mathrm{r}_{\mathrm{B}}\right)(\mathrm{x})\right),
\end{align*}
$$

and so $\varphi\left(r_{A}\right)\left(x y x^{-1}\right) \geq T\left(\varphi\left(r_{A}\right)(y), \varphi\left(r_{B}\right)(x)\right)$.

```
\varphi( w w 
=sup{\mp@subsup{w}{A}{}(uvu}\mp@subsup{}{}{-1})|u,v\inG,\varphi(u)x,\varphi(v)=y
\geqsup{min{\mp@subsup{w}{A}{\prime}(v),\mp@subsup{w}{B}{}(u)}|\varphi(u)x,\varphi(v)=y}
=min{sup{\mp@subsup{w}{A}{}(v)| y=\varphi(v)},sup{\mp@subsup{w}{B}{}(u)|x=\varphi(u)}}
=min{\varphi(\mp@subsup{w}{A}{})(y),\varphi(\mp@subsup{w}{\textrm{B}}{})(\textrm{x})},
```

and so $\varphi\left(w_{A}\right)\left(x y x^{-1}\right) \geq \min \left\{\varphi\left(w_{A}\right)(y), \varphi\left(w_{B}\right)(x)\right\}$,

```
\(\varphi\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)\left(\mathrm{xyx}^{-1}\right)=\sup \left\{\mathrm{r}_{\mathrm{A}}^{\prime}(\mathrm{z}) \mid \mathrm{z} \in \mathrm{G}, \varphi(\mathrm{z})=\mathrm{xyx}^{-1}\right\}\)
\(=\inf \left\{r_{A}^{\prime}\left(u v u^{-1}\right) \mid u, v \in G, \varphi(u) x, \varphi(v)=y\right\}\)
\(\leq \inf \left\{S\left(r_{A}^{\prime}(v), r_{B}^{\prime}(u)\right) \mid \varphi(u) x, \varphi(v)=y\right\}\)
\(=S\left(\inf \left\{r_{A}^{\prime}(v) \mid y=\varphi(v)\right\}, \inf \left\{r_{B}^{\prime}(u) \mid x=\varphi(u)\right\}\right)\)
    \(=S\left(\varphi\left(r_{\mathrm{A}}^{\prime}\right)(\mathrm{y}), \varphi\left(\mathrm{r}_{\mathrm{B}}\right)(\mathrm{x})\right)\),
thus \(\varphi\left(r_{A}\right)\left(x y x^{-1}\right) \leq S\left(\varphi\left(r_{A}^{\prime}\right)(y), \varphi\left(r_{B}^{\prime}\right)(x)\right)\).
```

$$
\begin{align*}
& \varphi\left(\mathrm{w}_{\mathrm{A}}\right)\left(\mathrm{xyx}^{-1}\right)=\inf \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{z}) \mid \mathrm{z} \in \mathrm{G}, \varphi(\mathrm{z})=\mathrm{xyx}^{-1}\right\} \\
& =\inf \left\{\mathrm{w}_{\mathrm{A}}\left(\mathrm{uvu}^{-1}\right) \mid \mathrm{u}, \mathrm{v} \in \mathrm{G}, \varphi(\mathrm{u}) \mathrm{x}, \varphi(\mathrm{v})=\mathrm{y}\right\} \\
& \leq \inf \left\{\max \left\{\mathbf{w}_{\mathrm{A}}(\mathrm{v}), \dot{w}_{\mathrm{B}}(\mathrm{u})\right\} \mid \varphi(\mathrm{u}) \mathrm{x}, \varphi(\mathrm{v})=\mathrm{y}\right\} \tag{42}\\
& =\max \left\{\inf \left\{\mathrm{w}_{\mathrm{A}}(\mathrm{v}) \mid \mathrm{y}=\varphi(\mathrm{v})\right\}, \inf \left\{\mathbf{w}_{\mathrm{B}}(\mathrm{u}) \mid \mathrm{x}=\varphi(\mathrm{u})\right\}\right\} \\
& =\max \left\{\varphi\left(\mathrm{w}_{\mathrm{A}}\right)(\mathrm{y}), \varphi\left(\mathbf{w}_{\mathrm{B}}\right)(\mathrm{x})\right\},
\end{align*}
$$

and so $\varphi\left(w_{A}^{\prime}\right)\left(x y x^{-1}\right) \leq \max \left\{\varphi\left(w_{A}^{\prime}\right)(y), \varphi\left(\tilde{w}_{B}\right)(x)\right\}$.

Thus using Eqs. (39)-(42) we will have that $\varphi(A) \sqsubseteq \varphi(B)$.

Proposition 15. Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(H)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in \operatorname{IFCN}(H)$ such that $A \sqsubseteq B$.

If $\varphi: G \rightarrow H$ is a group homomorphism, then $\varphi^{-1}(A) \sqsubseteq \varphi^{-1}(B)$.

Proof: Let $A=\left(\mu_{A}, \vartheta_{A}\right) \in \operatorname{IFCN}(H)$ and $B=\left(\mu_{B}, \vartheta_{B}\right) \in I F C N(H)$ such that $\mu_{A}=r_{A} e^{i W_{A}}$ and $\vartheta_{A}(x)=r_{A}^{\prime} e^{i W_{A}}$ and $\mu_{B}=r_{B} e^{i W_{B}}$ and $\vartheta_{\mathrm{B}}(\mathrm{x})=\mathrm{r}_{\mathrm{B}}^{\prime} \mathrm{e}^{\mathrm{i} \mathbf{w}_{\mathrm{B}}}$. Using Proposition 11. we will have that

$$
\left.\left.\varphi^{-1}(\mathrm{~A})=\left(\varphi^{-1}\left(\mu_{\mathrm{A}}\right), \varphi^{-1}\left(\vartheta_{\mathrm{A}}\right)\right)=\left(\varphi^{-1}\left(\mathrm{r}_{\mathrm{A}}\right) \mathrm{e}^{\mathrm{i} \varphi^{-1}\left(\mathrm{w}_{\mathrm{A}}\right)}\right), \varphi^{-1}\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right) \mathrm{e}^{\mathrm{i} \varphi^{-1}\left(\mathrm{w}_{\mathrm{A}}\right)}\right)\right) \in \operatorname{ICFN}(\mathrm{G})
$$

And

$$
\left.\left.\varphi^{-1}(\mathrm{~B})=\left(\varphi^{-1}\left(\mu_{\mathrm{B}}\right), \varphi^{-1}\left(\vartheta_{\mathrm{B}}\right)\right)=\left(\varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}\right) \mathrm{e}^{\mathrm{i} \varphi^{-1}\left(\mathrm{w}_{\mathrm{B})}\right)}\right), \varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}^{\prime}\right) \mathrm{e}^{\mathrm{i} \varphi^{-1}\left(\mathrm{w}_{\mathrm{B}}\right)}\right)\right) \in \operatorname{ICFN}(\mathrm{G}) .
$$

Let $x, y \in G$, then

113

$$
\begin{align*}
& \varphi^{-1}\left(\mathrm{r}_{\mathrm{A}}\right)\left(\mathrm{xyx} x^{-1}\right)=\mathrm{r}_{\mathrm{A}}\left(\varphi\left(\mathrm{xyx}^{-1}\right)\right) \\
& =\mathrm{r}_{\mathrm{A}}\left(\varphi(\mathrm{x}) \varphi(\mathrm{y}) \varphi\left(\mathrm{x}^{-1}\right)\right) \\
& =\mathrm{r}_{\mathrm{A}}\left(\varphi(\mathrm{x}) \varphi(\mathrm{y}) \varphi^{-1}(\mathrm{x})\right) \tag{43}\\
& \geq \mathrm{T}\left(\mathrm{r}_{\mathrm{A}}(\varphi(\mathrm{y})), \mathrm{r}_{\mathrm{B}}(\varphi(\mathrm{x}))\right) \\
& =\mathrm{T}\left(\varphi^{-1}\left(\mathrm{r}_{\mathrm{A}}\right)(\mathrm{y}), \varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}\right)(\mathrm{x})\right),
\end{align*}
$$

$$
\begin{align*}
& \varphi^{-1}\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)\left(\mathrm{xyx}^{-1}\right)=\mathrm{r}_{\mathrm{A}}\left(\varphi\left(\mathrm{xyx}^{-1}\right)\right) \\
& =r_{\mathrm{A}}^{\prime}\left(\varphi(\mathrm{x}) \varphi(\mathrm{y}) \varphi\left(\mathrm{x}^{-1}\right)\right) \\
& =r_{\mathrm{A}}^{\prime}\left(\varphi(\mathrm{x}) \varphi(\mathrm{y}) \varphi^{-1}(\mathrm{x})\right) \tag{45}\\
& \leq S\left(r_{A}^{\prime}(\varphi(y)), r_{B}^{\prime}(\varphi(x))\right) \\
& =\mathrm{S}\left(\varphi^{-1}\left(\mathrm{r}_{\mathrm{A}}^{\prime}\right)(\mathrm{y}), \varphi^{-1}\left(\mathrm{r}_{\mathrm{B}}^{\prime}\right)(\mathrm{x})\right) \text {, } \\
& \text { so } \varphi^{-1}\left(r_{A}^{\prime}\right)\left(x y x^{-1}\right) \leq S\left(\varphi^{-1}\left(r_{A}^{\prime}\right)(y), \varphi^{-1}\left(r_{B}^{\prime}\right)(x)\right) \text {. } \\
& \varphi^{-1}\left(w_{A}^{\prime}\right)\left(x^{\prime} x^{-1}\right)=w_{A}^{\prime}\left(\varphi\left(x y x^{-1}\right)\right) \\
& =w_{\mathrm{A}}\left(\varphi(\mathrm{x}) \varphi(\mathrm{y}) \varphi\left(\mathrm{x}^{-1}\right)\right) \\
& =w_{\mathrm{A}}\left(\varphi(\mathrm{x}) \varphi(\mathrm{y}) \varphi^{-1}(\mathrm{x})\right) \tag{46}\\
& \leq \max \left\{\mathrm{w}_{\mathrm{A}}(\varphi(\mathrm{y})), \hat{w}_{\mathrm{B}}(\varphi(\mathrm{x}))\right\} \\
& =\max \left\{\varphi^{-1}\left(w_{\mathrm{A}}\right)(\mathrm{y}), \varphi^{-1}\left(\mathrm{w}_{\mathrm{B}}\right)(\mathrm{x})\right\}, \\
& \text { thus } \varphi^{-1}\left(\tilde{W}_{A}\right)\left(x y x^{-1}\right) \leq \max \left\{\varphi^{-1}\left(\tilde{W}_{A}\right)(y), \varphi^{-1}\left(\tilde{W}_{B}\right)(x)\right\} \text {. }
\end{align*}
$$

Thus Eqs. (43)-(46) give us that $\varphi^{-1}(A) \sqsubseteq \varphi^{-1}(B)$.

7 | Conclusion and Open Problem

In this study, intuitionistic fuzzy complex subgroups with respect to t -norm T and s-norm sare defined and investigated some properties of them. Later, the inverse, composition, intersection and normality of them are introduced and we proved some basic new results and present some properties of them. Now one can investigate intuitionistic fuzzy complex submodules with respect to t -norm T and s -norm S as we did and this can be an open problem. We would like to thank the reviewers for carefully reading the manuscript and making several helpful comments to increase the quality of the paper.

Funding

This research received no external funding.

Conflicts of Interest

The author has seen and agreed with the contents of the manuscript and there is no financial interest to report and certifies that the submission is original work and is not under review at any other publication.

References

[1] Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353. DOI:10.1016/S0019-9958(65)90241-X
[2] Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20(1), 87-96. DOI:10.1016/S0165-0114(86)80034-3
[3] Husain, S., Ahmad, Y., \& Afshar Alam, M. (2012). A study on the role of intuitionistic fuzzy set in decision making problems. International journal of computer applications, 48(19), 35-41. DOI:10.5120/7458-0501
[4] Davvaz, B., \& Hassani Sadrabadi, E. (2016). An application of intuitionistic fuzzy sets in medicine. International journal of biomathematics, 9(3), 1650037. DOI:10.1142/S1793524516500376
[5] Rosenfeld, A. (1971). Fuzzy groups. Journal of mathematical analysis and applications, 35(3), 512-517. DOI:10.1016/0022-247X(71)90199-5
[6] Biswas, R. (1989). Intuitionistic fuzzy subgroups. Mathematical forum, 10(2), 37-46.
[7] Ramot, D., Friedman, M., Langholz, G., \& Kandel, A. (2003). Complex fuzzy logic. IEEE transactions on fuzzy systems, 11(4), 450-461. DOI:10.1109/TFUZZ.2003.814832
[8] Liu, L., \& Zhang, X. (2018). Comment on pythagorean and complex fuzzy set operations. IEEE transactions on fuzzy system, 26(6), 3902-3904. DOI:10.1109/TFUZZ.2018.2853749
[9] Alkouri, A. U. M., \& Salleh, A. R. (2012). Complex intuitionistic fuzzy sets [presentation]. AIP conference proceedings (Vol. 1482, pp. 464-470). DOI: 10.1063/1.4757515
[10] Alkouri, A. U. M., \& Salleh, A. R. (2013). Some operations on complex atanassov's intuitionistic fuzzy sets [presentation]. AIP conference proceedings (Vol. 1571, pp. 987-993). DOI: 10.1063/1.4858782
[11] Ali, M., Tamir, D. E., Rishe, N. D., \& Kandel, A. (2016). Complex intuitionistic fuzzy classes. 2016 ieee international conference on fuzzy systems, fuzz-ieee 2016 (pp. 2027-2034). Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/FUZZ-IEEE.2016.7737941
[12] Al-Husban, R., Salleh, A. R., \& Bin Ahmad, A. G. (2016). Complex intuitionistic fuzzy group. Global journal of pure and applied mathematics, 12(6), 4929-4949.
[13] Rasuli, R. (2022). T-norms over fuzzy ideals (implicative, positive implicative) of BCK-algebras. Mathematical analysis and its contemporary applications, 4(2), 17-34.
[14] Rasuli, R. (2022). T-fuzzy subbigroups and normal t-fuzzy subbigroups of bigroups. Journal of ramannujan society of mathematics and mathematical sciences, 9(2), 165-184.
[15] Rasuli, R. (2022). T-Conorms over anti fuzzy subgroups on direct product of groups. Annals of mathematics and computer science, 10, 8-18.
[16] Abu Osman, M. T. (1987). On some product of fuzzy subgroups. Fuzzy sets and systems, 24(1), 79-86. DOI:10.1016/0165-0114(87)90115-1
[17] Atanassov, K. T. (1994). New operations defined over the intuitionistic fuzzy sets. Fuzzy sets and systems, 61(2), 137-142. DOI:10.1016/0165-0114(94)90229-1
[18] Atanassov, K. T., \& Atanassov, K. T. (1999). Open problems in intuitionistic fuzzy sets theory. Intuitionistic fuzzy sets: theory and applications, 289-291.
[19] Buckley, J. J., \& Eslami, E. (2002). An introduction to fuzzy logic and fuzzy sets. Springer Science \& Business Media.
[20] Hungerford, T. W. (2012). Algebra (Vol. 73). Springer Science \& Business Media.
[21] Mordeson, J. N., \& Malik, D. S. (1998). Fuzzy commutative algebra. World Scientific.

