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Abstract 

1 | Introduction  

In mathematics, fuzzy sets (uncertain sets) are somewhat like sets whose elements have degrees of 

membership. The concept of fuzzy sets was introduced by Zadeh [1] in 1965. Atanassov [2] innovated 

the theory of Intuitionistic Fuzzy Sets (IFS) as a powerful extension of classical fuzzy sets. This 

particular theory has been a great source of inspiration for many mathematicians in various scientific 

fields like decision making problems [3] and medical diagnosis determination [4]. Roenfeld [5] started 

the investigation of fuzzy subgroups and found numerous essential properties of this concept. Biswas 

[6] started the conception of intuitionistic fuzzy subgroups in 1997. A new concept of complex fuzzy 

sets was presented by Ramot et al. [7]. The extension of fuzzy sets to complex fuzzy sets is comparable 

to the extension of real numbers to complex numbers. The more development of complex fuzzy sets 

can be viewed in [8]. Alkouri and Salleh [9] gave the idea of complex intuitionistic fuzzy subsets and 

enlarge the basic properties of this phenomena. This concept became more effective and useful in 

scientific field because it deals with degree of membership and non-membership in complex plane. 

They also initiated the concept of complex intuitionistic fuzzy relation and developed fundamental 
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operation of complex IFSs in [10]. Al-Husban and Salleh [11] introduced the concept of complex fuzzy 

subgroups in 2016. Ali and Tamir [12] innovated the notion complex intuitionistic fuzzy classes in 2016. 

The author by using norms, investigated some properties of fuzzy algebraic structures [13–15]. In Section 

2, we recall the elementary notions which will be needed in the sequel. Next, in Section 3, we define 

intuitionistic fuzzy complex subgroups with respect to t-norm T and t-conorm S (in short, IFCN(G)) of 𝐺 

and investigate properties of them as Propositions 2 and 3. Later, in Section 4, we introduce composition, 

inverse and intersection of two elements A, B∈IFCN(G) and we prove that AoB∈IFCN(G) and 

A∩B∈IFCN(G) under some conditions. Also in Section 5, we define normality of two elements 

A,B∈IFCN(G) and discuss some properties of them. Finally, in Section 6, we investigate image and pre 

image of them under group homomorphisms. 

2 | Preliminaries 

We recall first the elementary notions which play a key role for our further analysis. This section contains 

some basic definitions and preliminary results which will be needed in the sequel. For details we refer to 

[2, 7, 9], [16–21].  

 

Definition 1. A group is a non-empty set G on which there is a binary operation (𝑎, 𝑏) as 𝑎𝑏 such that 

I. If a and b belong to G then ab is also in G (closure). 

II. a(bc)=(ab)c for all a, b, c ∈G (associativity). 

III. There is an element eG∈G such that aeG=eGa=a  for all a∈G (identity). 

IV. If a ∈G, then there is an element a -1 ∈G such that aa -1=a -1a=eG  (inverse). 

One can easily check that this implies the unicity of the identity and of the inverse. A group G is called 

abelian if the binary operation is commutative, i.e., ab = ba for all a,b ∈G. 

Remark 1: There are two standard notations for the binary group operation: either the additive notation, 

that is (a, b)=a+b  in which case the identity is denoted by 0, or the multiplicative notation, that is (a, b)=ab  

for which the identity is denoted by 𝑒. 

Definition 2. Let G be an arbitrary group with a multiplicative binary operation and identity 𝑒. A fuzzy 

subset of G, we mean a function from G into [0,1]. 

Definition 3. For sets X,Y and Z, f=(f1, f2) :X→Y×Z  is called a complex mapping if f1:X→Y and f2 :X →Z 

are mappings. 

Definition 4. Let X be a nonempty set. A complex mapping A=(μA, ϑA) :X→[0,1]×[0,1] is called an IFS 

in X if μA+ ϑA ≤ 1 where the mappings μA :X→[0,1] and ϑA :X→[0,1] denote the degree of membership 

(namely μA(x) ) and the degree of non-membership (namely ϑA(x) ) for each x∈X to 𝐴, respectively. In 

particular 0~ and 1~ denote the intuitionistic fuzzy empty set and intuitionistic fuzzy whole set in 𝑋 defined 

by 0~(x) = (0,1) and 1~(x)=(0,1), respectively. We will denote the set of all IFSs in 𝑋 as IFS(X). 

Definition 5. Let X be a nonempty set and let A=(μA, ϑA) and A=(μB, ϑB) be IFSs in 𝑋. Then 

I. A⊂B  iff μA ≤ μB and ϑA ≥ ϑB. 

II. A=B  iff A⊂B and B⊂ A. 

Definition 6. Let X  be a nonempty set. A complex fuzzy set A on X  is an object having the form A = {(x, 

μA(x))|x ∈ X}, where μA denotes the degree of membership function that assigns each element x ∈ X a 

complex number μA(x) lies within the unit circle in the complex plane. We shall assume that is μA(x)  will 

be represented by rA(x)e
iwA(x) where i=√-1, and r : X → [0,1] and w : X → [0,2π]. Note that by setting 
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w(x) = 0 in the definition above, we return back to the traditional fuzzy subset. Let μ1=r1e
w1, and 

μ2=r2e
w2 be two complex numbers lie within the unit circle in the complex plane. By  μ1 ≤ μ2, we mean 

r1 ≤ r2 and w1 ≤ w2. 

Definition 7. A complex IFS 𝐴, defined on a universe of discourse 𝑈, is characterized by membership 

and non-membership functions 𝜇𝐴(𝑥) and 𝛾𝐴(𝑥), respectively, that assign any element x ∈ U a complex-

valued grade of both membership and non-membership in 𝑆. By definition, the values of μA(x) and 

γA(x) and their sum may receive all lying within the unit circle in the complex plane, and are on the form 

μA(x)=rA(x)e
iwμA

(x) for membership function in S and γA(x)=kA(x)e
iwγA(x) for non-membership 

function in 𝐴, where i=√-1, each of rA(x) and kA(x) are real-valued and both belong to the interval [0,1] 

such that 0 ≤  rA(x)+ kA(x)≤ 1 and iwμA
(x) and iwγA(x)

 are real-valued. 

Definition 8. A t-norm T is a function T:[0, 1]×[0, 1]→[0, 1]  having the following four properties: 

I. T(x,1)= x (neutral element). 

II. T(x, y)≤ T(x, z)if y ≤ z (monotonicity). 

III. T(x, y)= T(y, x) (commutativity). 

IV. T(x,T(y, z))= T(T(x, y), z) (associativity). 

For all x, y, z ∈ [0, 1]. 

It is clear that if x1≥x2 and y1≥y2, then T( x1, y1)≥ T( x2, y2). 

Example 1. 

I. Standard intersection T-norm Tm(x, y)=min{x, y} 

II. Bounded sum T-norm Tb(x, y)=max{0, x + y- 1}. 

III. Algebraic product 𝑇-norm Tp(x, y)= xy. 

IV. Drastic T-norm. 

V. Nilpotent minimum T-norm. 

VI. Hamacher product T-norm. 

 

The drastic t-norm is the pointwise smallest t-norm and the minimum is the pointwise largest t-norm: 

TD(x,y)≤ T(x, y)≤ Tm(x, y) for all x, y∈[0, 1]. 

Recall that t-norm 𝑇 will be idempotent if for all x ∈ [0,1], we have T(x, x)= x. 

Lemma 1. Let 𝑇 be a t-norm. Then 

 

Definition 9. An s-norm 𝑆 is a function S:[0, 1]×[0, 1]→[0, 1] having the following four properties: 

I. S(x, 0)=x. 
II. S(x, y)≤S(x, z)  if y≤ z. 

TD(x,y)=
{  
 
   
 
 
y,           if x=1,
x,            if y=1,
0,     otherwise.

  

TnM(x,y)={
min{x, y},        if x+y>1,

0,                  otherwise.
  

TH0
(x,y)=

{  
 
   
 
 
0,                   if x=y=0,
xy

x+y-xy
,      otherwise.  

T(T(x, y), T(w, z))= T(T(x, w), T(y, z)), for all 𝑥, y, w, z ∈[0, 1].  
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III. S(x, y)=S(y, x). 
IV. 𝑆(x, S(y, z))=S(S(x, y), z). 

For all x, y, z∈[0,1]. 

We say that 𝑆 is idempotent if for all x∈[0,1], S(x, x) = x. 

Example 2. The basic 𝑆-norms are 

and 

For all x, y∈[0,1]. 

𝑆𝑚 is standard union, 𝑆𝑏 is bounded sum, 𝑆𝑝 is algebraic sum. 

Lemma 2. Let 𝑆 be a s-norm. Then S(S(x, y), S(w, z))= S(S(x, w), S(y, z)), for all x, y, w, z∈[0,1]. 

Proposition 1. Let G be a group. Let H be a non-empty subset of G. The following are equivalent: 

I. H  is a subgroup of G. 

II. x, y∈H implies xy -1∈H for all x, y. 

Definition 9. Let H be subgroup of group G. Then we say that H is normal subgroup of G if for all g ∈G 

and h ∈ H, we have that ghg -1∈H. 

Definition 10. Let G and H be any two groups and f : G →H be a function. Then f is called a 

homomorphism if f(xy)=f(x)f(y) for all x, y ∈G. 

3 | Intuitionistic Fuzzy Complex Subgroups with Respect to Norms (t-

Norm 𝐓 and s-Norm 𝐒) 

Definition 11. Let G be a group such that μA = rAe
iwA and ϑA = rÁe

iwÁ be two complex fuzzy sets on G. 

An A=(μA, ϑA)∈IFS(G) is said to be intuitionistic complex fuzzy subgroup with respect to norms( t-norm 

𝑇 and s-norm 𝑆) (in short, IFCN(G)) of G if 

I. RA(xy)≥T(rA(x), rA(y)). 

II. rA(x
-1)≥rA(x). 

III. WA(xy)≥min{wA(x), wA(y)}. 

IV. WA(x
-1)≥wA(x). 

V. RÁ(xy)≤S(rÁ(x), rÁ(y)). 

VI. RÁ(x
-1)≤rÁ(x). 

VII. WA
́ (xy)≤ max{wÁ (x), wÁ (y)}. 

VIII. WA
́ (x -1)≤wÁ (x). 

For all x, y∈G. 

Sm(x, y) = max{x, y}, 

Sb(x, y) = min{1, x + y}, 
 

Sp(x, y)= x+y-xy,  
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Example 3. Let G = {0, a, b, c} be the Klein’s group. Every element is its own inverse, and the product 

of any two distinct non-identity elements is the remaining non-identity element. Thus the Klein 4-group 

admits the elegant presentation a2 = b2 = c 2= abc = 0. Define rA : G → [0, 1] by 

 

and wA : G → [0, 2π] by 

 

 

rÁ : G → [0, 1] by 

 

 

and wÁ  : G → [0, 2π] by 

 

 

 

Let T(a, b) = Tp(a, b) = ab and 𝑆(a, b) = Sp(a, b) = a+b-ab for all a, b ∈ [0, 1], then A = (μA, ϑA) ∈

IFCN(G). 

Proposition 2. Let A = (μA, ϑA)∈IFCN(G) and T and S be idempotent. Then for all x ∈ G, and n ≥ 1, 

I. A(e) ⊇ A(x). 

II. A(xn) ⊇ A(x). 

III. A(x) = A(x -1). 

Proof: As μA = rAe
iwA ∈ ICFN(G) so 

I.  

 

and 

 

and then 

 

Also 

 

and so 

 

Now from Eqs. (a) and (b) we obtain that 

 

rA(x)=

{  
   
 
   
   
 
 
0.75,               if x = a,
0.65,               if x = b,
0.55,               if x = c,

0.45,               if x = 0,

  

wA(x)=

{  
   
 
   
   
 
 
0.45π,           if x = a,
0.45π,           if x = b,
0.55π,           if x = c,

0.65π,           if x = 0.

  

rÁ(x)=

{  
   
 
   
   
 
 
0.25,              if x = a,
0.35,              if x = b,
0.45,              if x = c,

0.55,               if x = 0,

  

wÁ =

{  
   
 
   
   
 
 
0.55π,               if x = a,
0.55π,               if x = b,
0.45π,               if x = c,

0.35π,               if x = 0.

  

rA(e) = rA(xx
-1) ≥ T(rA(x), rA(x

-1)) ≥ T(rA(x), rA(x)) = rA(x),  

wA(e) = wA(xx
-1) ≥ min{wA(x),wA(x

-1)} ≥ min{wA(x), wA(x)} = wA(x),  

μA(e) = rA(e)e
iwA(e) ≥ rA(x)e

iwA(x) = μA(x). (a) 

wÁ (e) = wÁ (xx
-1) ≤ max{wÁ (x), wÁ(x

-1)} ≤ max{wÁ (x), wÁ (x)} = wÁ (x),  

ϑA(e) = rÁ(e)e
iwÁ(e)́  ≤ rA(x)e

iwA(x) = ϑA(x). (b) 
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II.  

and 

and so 

Also 

and 

and 

Now using Eqs. (a) and (b) give us 

III. As 

and so rA(x)= rA(x
-1) and as 

Then wA(x)= wA(x
-1). Then 

Now 

 so 𝑟�́�(𝑥) =  𝑟�́�(𝑥
−1) and as 

so 

wÁ (x)= wÁ (x
-1). Then 

Thus from Eqs. (a) and (b) we give that 

 

A(e) = (μA(e), ϑA(e)) ⊇ (μA(x), ϑA(x)) = A(x).  

rA(x
n) = rA (  

   
  
 

x.x…x⏟

n

)  
   
  
 

≥T( rA(x),rA(x),…rA(x⏟                            

n

))=rA(x),  

wA(x
n)= wA (  

   
  
 

x.x…x⏟

n

)  
   
  
 

≥min{wA(x),wA(x),…wA(x⏟                                    

n

)}=wA(x),  

μA(x
n)= rA(x

n)e iwA(x
n) ≥ rA(x)e

iwA(x) = μA(x). (a) 

rÁ(x
n)= rÁ (  

   
  
 

x.x…x⏟

n

)  
   
  
 

≤S{ rÁ(x),rÁ(x),…,rÁ(x⏟                              

n

)}=rÁ(x),  

wÁ (x
n)= wÁ (  

   
  
 

x.x…x⏟

n

)  
   
  
 

≤max{wÁ (x),wÁ (x),…,wÁ (x⏟                                    

n

)}=wÁ (x),  

ϑA(x
n)= rÁ(x

n)e iwA
́ (xn) ≤ rÁ(x)e

iwA
́ (x) = ϑA(x).   (b) 

A(xn)= (μA(x
n),ϑA(x

n))⊇ (μA(x), ϑA(x))= A(x).  

rA(x)= rA(x
-1)

-1
≥ rA(x

-1)≥rA(x),  

wA(x)= wA(x
-1)

-1
 ≥ wA(x

-1)≥ wA(x).  

μA(x
-1)= rA(x

-1)e iwA(x
-1)= rA(x)e

iwA(x) = μA(x). (a) 

rÁ(x)= rÁ(x
-1)

-1
≤ rÁ(x

-1)≤ rÁ(x),  

wÁ (x)= wÁ (x
-1)

-1
 ≤ wÁ (x

-1)≤wÁ (x),  

ϑA(x
-1)= rÁ(x

-1)e iwA
́ (x -1)= rÁ(x)e

iwA
́ (x) = ϑA(x). (b) 

A(x -1) = (μA(x
-1),ϑA(x

-1)) = (μA(x), ϑA(x)) = A(x).  
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Proposition 3. Let A = (μA, ϑA)∈IFCN(G) and 𝑇 and 𝑆 be idempotent. Then A(xy)=A(y) if and only 

if A(x)=A(e) for all x, y∈G. 

Proof: As A(xy)=A(y) for all x, y ∈ G so if we let y=e, then we get that A(x)= A(e). 

Conversely, suppose that A(x)=A(e) so from Proposition 2, we get that A(x)⊇A(y) and A(x)⊇ A(xy). Then 

rA(x)≥ rA(y) and rA(x)≥ rA(xy) and wA(x)≥ wA(y),wA(xy). Also rÁ(x)≤ rÁ(y) and rÁ(x)≤ rÁ(xy) and 

wÁ (x)≤ wÁ (y) and wÁ (x)≤ wÁ (xy). 

Now 

 

 

 

 

 

and then 

Also 

and then 

 

Therefore from Eqs. (a) and (b) we obtain that 

Also 

 

 

 

 

Then 

Also 

rA(xy)≥ T(rA(x), rA(y)) 

≥ T(rA(y), rA(y)) 

= rA(y)= rA(x
-1xy) 

≥ T(rA(x), rA(xy)) 

≥ T(rA(xy),rA(xy)) 

= rA(xy), 

 

rA(xy)= rA(y). (a) 

wA(xy)≥min{wA(x), wA(y)} 

≥min{wA(y), wA(y)}   = wA(y)= wA(x
-1xy) 

≥min{wA(x), wA(xy)} 

≥min{wA(xy),wA(xy)} 

= wA(xy), 

 

wA(xy)= wA(y). (b) 

μA(xy)= rA(xy)e
iwA(xy)= rA(y)e

iwA(y) = μA(y). (c) 

rÁ(xy)≤ S(rÁ(x), rÁ(y)) 

≤ S(rÁ(y),rÁ(y)) 

= rÁ(y)= rÁ(x
-1xy) 

≤ S(rÁ(x), rÁ(xy)) 

≤ S(rÁ(xy),rÁ(xy)) 

= rÁ(xy), 

 

rÁ(xy)= rÁ(y). (d) 

wÁ (xy)≤max{wÁ (x), wÁ (y)} 

≤max{wÁ (y), wÁ (y)} 

= wÁ (y)= wÁ (x
-1xy) 
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and then 

Therefore from Eqs. (d) and (e) we obtain that 

Now as Eqs. (c) and (f) we get that 

 

4 | Composition, Inverse and Intersection of IFCN(G) 

Definition 12. Let A=(μA, ϑA)∈IFCN(G) and B=(μB, ϑB)∈ IFCN(G) such that μA=rAe
iwA∈IFCN(G) and 

ϑA= rÁe
iwÁ  and μB=rBe

iwB   and ϑB=rB́e
iwB́ . We define the composion of 𝐴 and 𝐵 as A oB and for all x∈G 

we have 

Such that rA o rB :G →[0, 1] and wAowB : G → [0, 2π] and rÁ o rB́ :G → [0, 1] and wÁ o wB́  :G →[0, 2π]. 

Now define 

and 

and 

and 

For all x∈G. 

Proposition 4. Let A-1=(μA
-1, ϑA

-1)∈IFS(G) be the inverse of A=(μA, ϑA)∈IFCN(G) such that for all x∈G: 

If  𝑇 and 𝑆 be idempotent then A=(μA, ϑA)∈IFCN(G) if and only if 𝐴 satisfies the following conditions: 

I. A⊇A o A. 

II. A-1= A. 

Proof: Let x, y, z ∈ G with x = yz  and A∈ICF N(G). Then 

≤max{wÁ (x), wÁ (xy)} 

≤max{wÁ (xy),wÁ (xy)} 

= wÁ (xy), 

wÁ (xy)= wÁ (y). (e) 

ϑA(xy)= rÁ(xy)e
iwA
́ (xy)= rÁ(y)e

iwA
́ (y) = ϑA(y). (f) 

A(xy) = (μA(xy),ϑA(xy)) = (μA(y), ϑA(y)) = A(y).  

(A o B)(x)=((μA, ϑA) o (μB, ϑB))(x)=(μAoB(x), ϑAoB(x))= 

((rAorB)(x)e
i(wA o wB)(x), (rÁorB́)(x)e

i(wÁ o wB́ )(x). 
 

rA o rB)(x)={  
   
 
sup
x=ab 

T(rA(a), rB(b)),       if    x=ab,

0,                                      if   x ≠ ab,
  

(wA o wB)(x)={
min
x=ab 

{wA(a),wB(b)},    if   x=ab, 

0,                                 if    x≠ab,
  

(rÁ o rB́)(x) = {
inf
x=ab 

S(rÁ(a), rB́(b)),     if   x = ab,

0,                                   if    x ≠ ab,
  

(wA
́  o wB́ )(x)={

max
x=ab 

{wÁ (a),wÁ (b)},   if   x=ab, 

0,                                  if   x≠ab,
  

A-1(x)=(μA
-1(x), ϑA

-1(x))=(μA(x
-1), νA(x -1))=A(x -1).  
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I.  

and 

then 

Also 

and 

then 

Thus from  Eqs. (a) and (b) we get that 

and then A⊇A oA. 

II. As Proposition 2, we have that A-1(x) = A(x -1) = A(x) for all x∈G. Thus A-1=A. 

Conversely, let A ⊇ A o A and A-1=A and x, y, z ∈G with x =yz . Since A⊇A o A so rA(x) ≥ (rA o rA)(x)  
and then 

wA(x) ≥ (wA o wA)(x) and thus, 

rÁ(x) ≤ (rÁ o rÁ)(x) and then, 

wÁ (x)≤( wÁ  o wÁ )(x) and so 

 

As A-1=A so, 

 

Thus from Eqs. (a)-(h), we get that A∈IFCN(G). 

Corollary 1. Let A=(μA, ϑA)∈IFCN(G) and B=(μB, ϑB)∈IFCN(G) and G be commutative group. Then 

A o B∈IFCN(G) if and only if A o B = B o A. 

rA(x) = rA(yz) ≥ T(rA(y), rA(z)) = (rA o rA)(x),  

wA(x) = wA(yz) ≥ min{wA(y), wA(z)} = (wA o wA)(x),  

μA(x)= rA(x)e
iwA(x) ≥ (rA o rA)(x)e

i(wAowA)(x) = (μAoA)(x). (a) 

rÁ(x)=rÁ(yz) ≤S(rÁ(y), rÁ(z))=(rÁ o rÁ)(x),  

wÁ (x)= wÁ (yz)≥ min{wÁ (y), wÁ (z)}= (wÁ  o wÁ )(x),  

ϑA(x)= rÁ(x)e
iwA
́ (x) ≥ (rÁ o rÁ)(x)e

i(wA
́ owÁ)(x) = (ϑAoA)(x). (b) 

A(x) = (μA(x), ϑA(x)) ⊇ (μAoA)(x), ϑAoA)(x)) = (A o A)(x),  

rA(yz) =  rA(x) ≥  rAorA(x) = sup
x=ab 

T(rA(y), rB(z)) ≥ T(rA(y), rA(z)). (a) 

wA(yz)=wA(x)≥ (wA o wA)(x)=min
x=yz 

{wA(y),wB(z)}  ≥{wA(y), wA(z)}. (b) 

rÁ(yz)=rÁ(x)≤rÁorÁ (x)= inf
x=yz 

S(rÁ(y), rB́(z))  ≤S(rÁ(y), rÁ(z)). (c) 

wÁ (yz)=wÁ (x)≤( wÁ owÁ)(x)=max
x=yz 

{wÁ (y),wÁ (z)}  ≤{wÁ (y), wÁ (z)}. (d) 

rA(x
-1)= rA

-1(x)= rA(x). (e) 

rÁ(x
-1)= rÁ

-1(x)= rÁ(x). (f) 

wA(x
-1)= wA

-1(x)= wA(x). (g) 

wÁ (x
-1)= wÁ

-1(x)= wÁ (x). (h) 
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Proof: If A, B, A o B∈IFCN(G), then from Proposition 4 we get that A-1 = A, B -1 = B and (BoA)-1 = B o A. 

Now A o B= A-1 o B -1 =(BoA)-1 =B o A. conversely, since A o B = B o A we have 

Also 

Now Proposition 4 gives us that 𝐴 o B∈IFCN(G). 

Definition 13. Let A=(μA, ϑA)∈IFCN(G) and B=(μB, ϑB)∈ IFCN(G)  such that, μA= rAe
iwA  and ϑA(x)= 

rÁe
iwÁ  and μB= rBe

iwB and  ϑB(x)=rB́e
iwB́ . define the intersection of 𝐴 and 𝐵 as A ∩B such that for all x∈G: 

Such that rA ∩ rB: G → [0, 1] and wA∩wB: G → [0, 2π] and rÁ ∩ rB́: G → [0, 1] and 

wA ∩wÁ́  : G → [0, 2π]  define: 

Proposition 5. Let A=(μA, ϑA)∈IFCN(G) and B=(μB, ϑB)∈IFCN(G). Then A∩B∈IFCN(G).  

Proof: Let A=(μA, ϑA)∈IFCN(G) and B=(μB, ϑB)∈ IFCN(G) such that μA= rAe
iwA and ϑA(x)= rÁe

iwÁ  and  

μB= rBe
iwB  and  ϑB(x)= rB́e

iwB́ . 

I. Let g1,g2ϵG. then 

and thus 

II. If g ∈ G, then 

and so (rA∩ rB)(g
-1)≥(rA ∩ rB)(g). 

III. If g ∈ G, then 

 

and so (wA∩wB)(g1g2)≥min{(wA∩ wB)(g1), (wA ∩wB)(g2)}. 

(AoB)-1 =(BoA)-1 =A-1 o B -1 =A o B.  

(A o B) o (A o B) =A o (B o A) o B =A o (A o B) o B =(A o A) o (B o B)⊆A o B.  

(A∩ B)(x) = ((μA, ϑA) ∩ (μB, ϑB))(x) 

=(μA∩B(x), νA∩B(x)) 

=((rA∩rB)(x)e
i(wA∩wB)(x), ((rÁ∩ rB́)(x)e

i(wÁ∩ wB́ )(x). 

 

(rA ∩ rB)(x)=T(rA(x), rA(x)), 

(wA ∩ wB)(x)=min{wA (x), wA (x)} , 

(rÁ ∩ rB́)(x)= S(rÁ(x), rB́(x)), 

(wÁ ∩ wB́ )(x)=max{wÁ  (x), wB́  (x)} , 

for all x ∈ G. 

 

(rA ∩ rB)(g1g2) = T (rA(g1g2), rB(g1g2)) 

≥ T (T (rA(g1), rA(g2)), T (rB(g1), rB(g2))) 

= T (T (rA(g1), rB(g1)), T (rA(g2), rB(g2))) (Lemma 1) 

= T ((rA∩ rB)(g1), (rA ∩rB)(g2)), 

 

(rA ∩ rB)(g1g2) ≥ T ((rA ∩ rB)(g1), (rA ∩ rB)(g2)).  

 (rA ∩ rB)(g
-1)=T (rA(g

-1), rB(g
-1))≥T (rA(g), rB(g))=(rA ∩ rB)(g),  

(wA∩wB)(g1g2)= min {wA(g1g2), wB(g1g2)} 

≥ min{min{wA(g1),wA(g2)}, min{wB(g1),wB(g2)}} 

=min {min {wA(g1),wB(g1)}, min {wB(g2),wB(g2)}} 

=min{(wA∩ wB)(g1), (wA ∩wB)(g2)}, 
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IV. Let g ∈ G, so 

and so (wA∩wB)(g
-1)≥(wA∩wB)(g). 

V. Let g1,g2ϵG.  then 

 

and thus 

VI. If g ∈ G, then 

and so (rÁ∩ rB́)(g
-1)≤(rÁ ∩ rB́)(g). 

VII. Let g1,g2ϵG. Then 

and so (wÁ ∩wB́ )(g1g2)≤max{(wÁ ∩ wB́ )(g1), (wÁ  ∩wB́ )(g2)}.

VIII. Let g ∈ G, so 

and so (wÁ ∩wB́ )(g
-1)≤(wÁ ∩wB́ )(g). 

Then above steps give us that A∩B∈IFCN(G). 

Corollary 2. Let  In= {1, 2, ..., n}. If  {A i=(μAi, ϑAi) | i∈ In} ⊆IFCN(G).  

Then A=⋂ A i i∈ In ∈IFCN(G). 

5 | Normality of ICFN(G) 

Definition 14. Let A=(μA, ϑA)∈IFCN(G) such that μA= rAe
iwA and ϑA(x)= rÁe

iwÁ . We say that 

A=(μA, ϑA) is normal if for all x, y∈G, we have that A(xyx -1) = A(y) which means that rA(xyx
-1) = rA(y) 

and wA(xyx
-1)= wA(y) and rÁ(xyx

-1) =rÁ(y) and wÁ (xyx
-1)=wÁ (y). We denote by NIFCN(G) the set 

of all normal intuitionistic fuzzy complex subgroups with respect to norms (t-norm 𝑇 and s-norm 𝑆). 

Proposition 6. Let A=(μA, ϑA)∈NIFCN(G) and B=(μB, ϑB)∈NIFCN(G) such that μA= rAe
iwA  and  

ϑA(x)=rÁe
iwÁ  and μB=rBe

iwB and ϑB(x)= rB́e
iwB́ . Then A∩B∈NICFN(G). 

Proof: As Proposition 5 we have that A∩B∈IFCN(G). 𝐿𝑒𝑡 x, y, ∈G then 

(wA∩wB)(g
-1)=min{wA(g

-1), wB(g
-1)}≥min{wA(g), wB(g)}=(wA∩wB)(g),  

(rÁ ∩ rB́)(g1g2)=S (rÁ(g1g2), rB́(g1g2)) 

≤ S (S (rÁ(g1), rÁ(g2)), S (rB́(g1), rB́(g2))) 

= S (S (rÁ(g1), rB́(g1)), S (rA(g2), rB́(g2))) (Lemma 1) 

=S ((rÁ∩ rB́)(g1), (rÁ ∩rB́)(g2)), 

 

(rÁ∩ rB́)(g1g2)≤S((rÁ∩rB́)(g1), (rÁ∩rB́)(g2)).  

(rÁ ∩ rB́)(g
-1)=S (rÁ(g

-1), rB́(g
-1))≤S (rÁ(g), rB́(g))=(rÁ ∩ rB́)(g),  

(wÁ ∩wB́ )(g1g2) = max {wÁ (g1g2), wB́ (g1g2)} 

≤ max{max{wÁ(g1),wÁ (g2)}, max{wB́ (g1),wB́ (g2)}} 

=max {max {wÁ (g1),wB́ (g1)}, max {wÁ (g2),wB́ (g2)}} 

= max{(wÁ ∩ wB́ )(g1), (wÁ  ∩wB́ )(g2)}, 

 

(wÁ ∩wB́ )(g
-1)=max{wÁ (g

-1), wB́ (g
-1)} ≤max{wÁ (g), wB́ (g)}=(wÁ ∩wB́ )(g),  
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I. (rA ∩ rB)(xyx

-1) =T(rA(xyx
-1), rB(xyx

-1)) = T(rA(y), rB(y)) = (rA ∩ rB)(y).  
II. (wA ∩ wB)(xyx

-1)=min{wA(xyx
-1), wB(xyx

-1)}=min{wA(y), wB(y)=(wA ∩ wB)(y).  

III. (rÁ( ∩ rB́)(xyx
-1) =S(rÁ((xyx

-1), rB́(xyx
-1)) = S(rÁ((y), rB́(y)) = (rÁ( ∩ rB́)(y). 

IV. (wÁ  ∩ wB́ )(xyx
-1)=max{wÁ (xyx

-1), wB́ (xyx
-1)}= max{wÁ (y), wB́ (y)}=(wÁ  wB́ )(y).  

Then from above steps, we get that 

And so A∩B∈NIFCN(G). 

Corollary 3. Let  In={1, 2, ..., n}. If {A i=(μAi, ϑAi) | i∈ In} ⊆NIFCN(G). Then A=⋂ Aii∈ In
∈NIFCN(G). 

Definition 15. Let A=(μA, ϑA)∈NIFCN(G) and B=(μB, ϑB)∈IFCN(G)  such that A⊆ B. Then A is called 

normal of B, written A⊑B, if 

I. rA(xyx
-1)≥T(rA(y), rB(x)). 

II. wA(xyx
-1)≥min {wA(y), wB(x)}. 

III. rÁ(xyx
-1)≤S{rÁ(y), rB́(x)}. 

IV. wÁ (xyx
-1)≤max {wÁ (y), wB́ (x)}. 

For all 𝑥, y∈G. 

Proposition 7. If 𝑇 and 𝑆 be idempotent and A=(μA, ϑA)∈IFCN(G), then A⊆A. 

Proof: Let  x, y∈G and A=(μA, ϑA)∈IFCN(G). Then 

and so 

also  

Then 

 

(A ∩ B)(xyx -1)=(μA∩B(xyx
-1), ϑA∩B(xyx

-1))=(μA∩B(y), ϑA∩B(y))=(A ∩ B)(y).  

rA(xyx
-1)≥T(rA(xy), rA(x

-1)) 

≥ T(rA(xy), rA(x)) ≥ T (T(rA(x), rA(y)), rA(x)) 

=T (T(rA(x), rA(x)), rA(y))=T(rA(x), rA(y))= T(rA(y), rA(x)), 

 

rA(xyx
-1)≥ T(rA(y), rA(x)). (1) 

wA(xyx
-1)≥min{wA(xy), wA(x

-1)} 

=min{wA(xy), wA(x)} 

≥ min{min{wA(x), wA(y)},wA(x)} 

= min{min{wA(x), wA(x)},wA(y)} 

=min{wA(x), wA(y)} 

= min{wA(y), wA(x)}, 

 

wA(xyx
-1)≥min{wA(y), wA(x)}. (2) 

rÁ(xyx
-1)≤S (rÁ(xy), rÁ(x

-1)) 

≤ S(rÁ(xy), rÁ(x)) 
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Now 

 

 

 

 

 thus 

Finally, 

 

then 

 

Then Eqs. (1)-(4) give us that A⊑A. 

Proposition 8. Let A=(μA, ϑA)∈NIFCN(G) and B=(μB, ϑB)∈IFCN(G) such that μA= rAe
iwA and  

ϑA(x)=rÁe
iwÁ  and μB=rBe

iwB  and ϑB(x)= rB́e
iwB́ . If 𝑇 and 𝑆 be idempotent, then A∩B⊑B. 

Proof: As Proposition 6 we have that A∩B∈NIFCN(G). Let x, y∈G then 

 

and then 

≤ S (S(rÁ(x), rA(y)), rÁ(x)) 

= S (S(rÁ(x), rA(x)), rÁ(y)) 

= S(rÁ(x), rÁ(y)) 

= S(rÁ(y), rÁ(x)), 

rÁ(xyx
-1)≤ S(rA(y), rA(x)). (3) 

wÁ (xyx
-1)≤max{wÁ (xy), wÁ (x

-1)} 

≤ max{wÁ (xy), wÁ (x)} 

≤ max{min{wÁ (x), wA(y)},wÁ(x)} 

= max{min{wÁ (x), wA(x)},wÁ (y) 

=max{wÁ (x), wÁ(y)} 

= max{wÁ (y), wÁ (x)}, 

 

wÁ (xyx
-1)≤min{wÁ (y), wÁ (x)}. (4) 

(rA ∩rB)(xyx
-1)= T((rA(xyx

-1), rB(xyx
-1)) 

= T((rA(y), rB(xyx
-1)) 

≥ T(rA(y), T(rB(xy), rB(x
-1)) 

≥ T(rA(y), T(T (rB(x), rB(y)), rB(x))) 
= T(rA(y), T(rB(y), T (rB(x), rB(x))))  

= T (rA(y), T(rB(y), rB(x))) 

= T (T(rA(y), rB(y)), rB(x)) 

= T((rA ∩rB)(y), rB(x)),    

 

(rA ∩rB)(xyx
-1)≥T((rA ∩rB)(y), rB(x)). (5) 
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Also 

then 

Now 

 and then 

As 

then 

Then Eqs. (5)-(8) mean that A∩B⊑B. 

Proposition 9. Let A=(μA, ϑA)∈IFCN(G) and B=(μB, ϑB)∈IFCN(G) and C=(μC, ϑC)∈IFCN(G) such that 

μA= rAe
iwA   and  ϑA(x)=rÁe

iwÁ  and  μB=rBe
iwB  and  ϑB(x)= rB́e

iwB́  and μC=rCe
iwC  and ϑC(x)= rĆe

iwĆ  

Let 𝑇 and 𝑆 be idempotent and A⊑C and  B⊑C. Then A∩B⊑C. 

 

 

(wA∩wB)(xyx
-1)= min{(wA(xyx

-1), wB(xyx
-1)} 

= min{(wA(y), wB(xyx
-1)} 

≥ min{wA(y), min{wB(xy), wB(x
-1)}} 

≥ min{wA(y), min{min{wB(x), wB(y)}, wB(x)}}                                                                  

= min {wA(y), min{wB(y), Min{wB(x), wB(x)}}}                                                                        

=min {wA(y),min{wB(y), wB(x)}} 

= min{min{wA(y), wB(y)}, wB(x)}} 
= min{(wA∩wB)(y), wB(x)},  

 

(wA∩wB)(xyx
-1)≥min{(wA∩wB)(y), wB(x)}. (6) 

(rÁ∩rB́)(xyx
-1)=S((rÁ(xyx

-1), rB́(xyx
-1))  

= S((rÁ(y), rB́(xyx
-1)) 

≤ S(rÁ(y), S(rB́(xy), rB́(x
-1)) 

≤ S (rÁ(y), S(S(rB́(x), rB́(y)), rB́(x))) 

= S(rÁ(y), S(rB́(y), S(rB́(x), rB́(x)))) 

= S (rÁ(y), S(rB́(y), rB́(x))) 

=S (S(rÁ(y), rB́(y)), rB́(x)) 

=S((rÁ ∩rB́)(y), rB́(x)), 

 

(rÁ ∩rB́)(xyx
-1)≤S((rÁ ∩rB́)(y), rB́(x)). (7) 

(wA
́ ∩wB́ )(xyx

-1)= min{wÁ (xyx
-1), wB́ (xyx

-1)} 

= min{wÁ (y), wB́ (xyx
-1)} 

≥ min{wÁ (y), min{wB(xy), wB(x
-1)}} 

    ≥ min{wÁ (y), min{min{wB(x), wB(y)}, wB(x)}} 

= min {wÁ (y), min{wB́ (y), min{wB́ (x), wB́ (x)}}} 

=min {wÁ (y),min{wB́ (y), wB́ (x)}} 

= min{min{wÁ (y), wB(y)}, wB́ (x)}} 

= min{(wA
́ ∩wB́ )(y), wB́ (x)}, 

 

(wA
́ ∩wB́ )(xyx

-1)≥min{(wA
́ ∩wB́ )(y), wB́ (x)}. (8) 
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Proof: From Proposition 6 we get that A∩B∈ICFN(G). Now for all x, y∈G we get that 

and then 

 

Also 

 

then 

As 

so 

 
 

Since 

then 

Then as Eqs. (9)-(13) we get that A∩B⊑C. 

Corollary 4. Let In={1, 2, ..., n}. If {A i=(μAi, ϑAi) | i∈ In} ⊆IFCN(G) such that {A i=(μAi, ϑAi) | i∈ 

In}⊑B=(μB, ϑB).  Then A=⋂ A i i∈ In ⊑B=(μB, ϑB). 

6 | Group Homomorphisms and IFCN(G) 

Definition 16. Let A=(μA, ϑA)∈IFCN(G) and B=(μB, ϑB)∈IFCN(H) such that μA= rAe
iwA 

andϑA(x)=rÁe
iwÁ  and μB=rBe

iwB and ϑB(x)= rB́e
iwB́ . 

(rA ∩ rB)(xyx
-1) = T(rA(xyx

-1), rB(xyx
-1)) 

≥ T(T(rA(y), rC(x)), T(rB(y), rC(x))) 

= T(T(rA(y), rB(y)), T(rC(x),rC(x))) 

= T(T(rA(y),rB(y)), rC(x)) 

= T((rA ∩ rB)(y),rC(x)), 

 

(rA ∩ rB)(xyx
-1)≥T((rA ∩ rB)(y),rC(x)). (9) 

(wA ∩ wB)(xyx
-1)=min{wA(xyx

-1), wB(xyx
-1)}                                                      

 ≥min{min{wA(y),wC(x)} ,min{wB(y),wC(x)}}  

=min{min{wA(y),wB(y)} ,min{wC(x),wC(x)}} 

=min{min{wA(y),wB(y)} , wC(x)} 

= min{(wA ∩ wB)(y),wC(x)), 

 

(wA∩ wB)(xyx
-1)≥min{(wA∩ wB)(y),wC(x)). (10) 

(rÁ∩rB́)(xyx
-1) =S(rÁ(xyx

-1), rB́(xyx
-1)) 

≤S(S(rÁ(y), rĆ(x)),S(rB́(y), rĆ(x))) 

=S(S(rÁ(y), rB́(y)), S(rĆ(x),rĆ(x))) 

=S(S(rÁ(y),rB́(y)), rĆ(x)) 

=S((rÁ∩rB́)(y),rĆ(x)), 

 

(rÁ∩rB́)(xyx
-1)≤S((rÁ∩rB́)(y),rĆ(x)). (11) 

(wÁ ∩wB́ )(xyx
-1) = max{wÁ (xyx

-1), wB́ (xyx
-1)} 

≤ max{max{wÁ(y),wĆ (x)}, max{wB́ (y),wĆ (x)}} 

= max{max{wÁ(y),wB́ (y)}, max{wĆ (x),wĆ (x)}} =max{max{wÁ (y),wB́ (y)} , 

wĆ (x)} 

= max{(wÁ  ∩wB́ )(y),wĆ (x)). 

(12) 

(wÁ ∩wB́ )(xyx
-1)≤max{(wÁ∩ wB́ )(y),wĆ (x)). (13) 
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Let φ :G→H be a group homomorphism. Define: 

For all h ∈ H define: 

nd 

Also define 

such that for all g∈G: 

Proposition 10. Let A=(μA, ϑA)∈IFCN(G) and H be a group. Suppose that φ : G → H is a group 

homomorphism. Then φ(A)∈IFCN(H). 

Proof: Let φ(A)=(φ(μA), φ(ϑA))=(φ(rA)e
iφ(wA)), φ(rÁ)e

iφ(wÁ))) and h1, h2∈H and g1, g2∈G such that 

φ(g1) = h1 and φ(g2) = h2. Then 

and so 

Let g∈G and h∈H such that φ(g)=h. Then 

and then 

Let h1, h2∈H and g1, g2∈G with φ(g1) = h1 and φ(g2) = h2. Then 

and so 

φ(A)=(φ(μA), φ(ϑA))=(φ(rAe
iwA), φ(rÁe

iwA
́
))=(φ(rA)e

iφ(wA)), φ(rÁ)e
iφ(wÁ))).  

φ(rA) :H→[0, 1] as φ(rA)(h) = sup{rA(g) | g∈ G, φ(g)=h},  

φ(wA) :H→[0, 2π] as φ(wA)(h) =sup{wA(g) | g∈ G, φ(g)=h},  

φ(rÁ) :H→[0, 1] as φ(rÁ)(h) = inf{rÁ(g) | g∈ G, φ(g)=h},  

φ(wÁ ):H→[0, 2π] as φ(wÁ)(h) =inf{wÁ (g) | g∈ G, φ(g)=h}.  

φ-1(B)=(φ-1(μB), φ
-1(ϑB))=(φ

-1(rBe
iwB), φ-1(rB́e

iwB
́
))= 

(φ-1(rB)e
iφ-1(wB)), φ-1(rB́)e

iφ-1(wB́ ))), 
 

φ-1(rB) :G→[0, 1] as φ-1(rB)(g) =rB(φ(g)), 

φ-1(rB́) :G→[0, 1] as φ-1(rB́)(g) =rB́(φ(g)), 

φ-1(wB) :G→[0,2π] as φ-1(wB)(g) =wB(φ(g)), 

φ-1(wB́ ) :G→[0,2π] as φ-1(wB́ )(g)=wB́ (φ(g)). 

 

φ(rA)(h1h2)=sup{rA(g1g2) | g1= φ(h1), g2 =φ(h2)} 

≥sup{T(rA(g1), rA(g2)) | g1=φ(h1), g2 = φ(h2)} 

=T(sup{rA(g1) | g1 =φ(h1)},sup{rA(g2) | g2 =φ(h2)}) 

=T(φ(rA)(h1), φ(rA)(h2)), 

 

φ(rA)(h1h2)≥T(φ(rA)(h1), φ(rA)(h2)). (14) 

φ(rA)(h
-1)=sup{rA(g

-1) | g -1 ∈ G, φ(g -1)=h-1} 

≥ sup{rA(g) | g -1 ∈G,φ-1(g)=h-1} 

= sup{rA(g) | g∈G, φ(g) = h} 

= φ(rA)(h), 

 

φ(rA)(h
-1)≥φ(rA)(h). (15) 

φ(wA)(h1h2)=sup{wA(g1g2) | g1= φ(h1), g2 =φ(h2)} 

≥sup{min{wA(g1),wA(g2)} | g1=φ(h1), g2 = φ(h2)} 

= min{sup{wA(g1) | g1=φ(h1)},sup{wA(g2) |g2 =φ(h2)}} 

= min{φ(wA)(h1), φ(wA)(h2)}, 

 

φ(wA)(h1h2)≥min{φ(wA)(h1), φ(wA)(h2)}. (16) 
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Let g∈G and h∈H such that φ(g)=h. Then 

then 

 

et h1, h2∈H and g1, g2∈G with φ(g1) = h1 and φ(g2) = h2. Then 

 

then 

 

Let h1, h2∈H and g1, g2∈G with φ(g1) = h1 and φ(g2) = h2. Then 

 

and so 

Let ∈G and h∈H such that φ(g)=h. Then 

and then 

 

Let h1, h2∈H and g1, g2∈G  with φ(g1) = h1 and φ(g2) = h2. Then 

and so 

 

Let g∈G and h∈H such that φ(g)=h. Then 

then 

 

Therefore from Eqs. (14)-(22) we get that φ(A)∈ICFN(H). 

φ(wA)(h
-1)=sup{wA(g

-1) | g -1 ∈ G, φ(g -1)=h-1} 

≥ sup{wA(g) | g
-1 ∈G,φ-1(g)=h-1} 

= sup{wA(g) | g∈G, φ(g) = h}= φ(wA)(h), 

 

φ(wA)(h1h2)≥min{φ(wA)(h1), φ(wA)(h2)}. (17) 

φ(rÁ)(h1h2)=inf{rÁ(g1g2) | g1= φ(h1), g2 =φ(h2)} 

≤ inf{T(rÁ(g1), rÁ(g2)) | g1=φ(h1), g2 = φ(h2)} 

=S(inf{rÁ(g1) | g1 =φ(h1)},inf{rÁ(g2) |g2 =φ(h2)}) 

=S(φ(rÁ)(h1), φ(rÁ)(h2)), 

 

φ(wA)(h1h2)≥min{φ(wA)(h1), φ(wA)(h2)}. (18) 

φ(rÁ)(h1h2)=inf{rÁ(g1g2) | g1= φ(h1), g2 =φ(h2)} 

≤ inf{T(rÁ(g1), rÁ(g2)) | g1=φ(h1), g2 = φ(h2)} 

=S(inf{rÁ(g1) | g1 =φ(h1)},inf{rÁ(g2) |g2 =φ(h2)}) 

=S(φ(rÁ)(h1), φ(rÁ)(h2)), 

 

φ(wA)(h1h2)≥min{φ(wA)(h1), φ(wA)(h2)}. (19) 

φ(rÁ)(h
-1)=inf{rÁ(g

-1) | g -1 ∈ G, φ(g -1)=h-1} 

≤inf{rÁ(g) | g
-1 ∈G,φ-1(g)=h-1} 

=inf{rÁ(g) | g∈G, φ(g) = h} 

=φ(rÁ)(h), 

 

φ(rÁ)(h
-1)≤φ(rÁ)(h). (20) 

φ(wÁ )(h1h2)=inf{wÁ (g1g2) | g1= φ(h1), g2 =φ(h2)} 

≤ inf{max{wÁ (g1),wA(g2)} | g1=φ(h1), g2 = φ(h2)} 

= max{inf{wÁ (g1) | g1=φ(h1)},inf{wÁ (g2) | g2 =φ(h2)}} 

= max{φ(wÁ )(h1), φ(wÁ )(h2)}, 

 

φ(wÁ )(h1h2)≤max{φ(wÁ )(h1), φ(wÁ )(h2)}. (21) 

φ(wÁ )(h
-1)=inf{wÁ (g

-1) | g -1 ∈ G, φ(g -1)=h-1} 

≤ inf{wÁ (g) | g
-1 ∈G,φ-1(g)=h-1} 

= inf{wÁ (g) | g∈G, φ(g) = h} 

= φ(wÁ )(h), 

 

φ(wÁ )(h
-1)≤φ(wÁ )(h). (22) 
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Proposition 11. Let H be a group and B=(μB, ϑB)∈IFCN(H) and φ :G →H is a group homomorphism. 

Then φ-1(B)∈IFCN(G). 

Proof: Let B=(μB, ϑB)∈IFCN(H) such that μB=rBe
iwB  and  ϑB(x)= rB́e

iwB́   and φ-1(B)= (φ-1(rB)e
iφ-1(wB)), 

φ-1(rB́)e
iφ-1(wB́ ))). Let g1,g2∈G.  Then 

and so φ-1(rB)(g1g2)≥T (φ
-1(rB)(g1), φ

-1(rB)(g2)). 

and so φ-1(rB́)(g1g2)≤S(φ
-1(rB́)(g1), φ

-1(rB́)(g2)). 

and so φ-1(wB)(g1g2)≥min{φ
-1(wB)(g1), φ

-1(wB)(g2)}. 

so φ-1(wB́ )(g1g2)≤max{φ
-1(wB́ )(g1), φ

-1(wB́ )(g2)}. 

Let g∈G. 

Thus Eqs. (23)-(30) give us that φ-1(B)∈ICFN(G). 

Proposition 12. Let A=(μA, ϑA)∈NIFCN(G) and H be a group. Suppose that φ:G→H is a 

homomorphism. Then φ(A)∈NIFCN(H). 

φ-1(rB)(g1g2) = rB(φ(g1g2)) 

= rB(φ(g1)φ(g2)) 

≥ T(rB(φ(g1)), rB(φ(g2))) 

=T(φ-1(rB)(g1), φ
-1(rB)(g2)), 

(23) 

φ-1(rB́)(g1g2)=rB́(φ(g1g2)) 

=rB́(φ(g1)φ(g2)) 

≤T(rB́(φ(g1)), rB́(φ(g2))) 

=T(φ-1(rB́)(g1), φ
-1(rB́)(g2)), 

(24) 

φ-1(wB)(g1g2) = wB(φ(g1g2)) 

= wB(φ(g1)φ(g2)) 

≥ min{wB(φ(g1)), wB(φ(g2))} 

= min{φ-1(wB)(g1), φ
-1(wB)(g2)} 

(25) 

φ-1(wB́)(g
1
g

2
) = wB́(φ(g

1
g

2
)) 

= wB́(φ(g
1
)φ(g

2
)) 

≤ maz{wB́ (φ(g
1
)) , wB́ (φ(g

2
)) } 

= max{φ-1(wB́)(g
1
), φ-1(wB́)(g

2
)}, 

(26) 

φ-1(rB)(g
-1)=rB (φ(g

-1))=rB(φ
-1(g))≥rB(φ(g))=φ

-1(rB)(g), (27) 

φ-1(rB́)(g
-1)=rB́ (φ(g

-1))=rB́(φ
-1(g))≤rB́(φ(g))=φ

-1(rB́)(g), (28) 

φ-1(wB)(g
-1)=wB (φ(g

-1))=wB(φ
-1(g))≥wB(φ(g))=φ

-1(wB)(g), (29) 

φ-1(wB́ )(g
-1) =wB́ (φ(g

-1))=wB́ (φ
-1(g))≤wB́ (φ(g))= φ

-1(wB́ )(g). (30) 
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Proof: Using Proposition 10, we give that φ(A)∈IFCN(H). Let x, y∈H such that φ(u)=x and φ(w)=y with 

u, w∈G. Then 

so φ (rA(xyx
-1)) =φ(rA(y)). 

 

then φ (wA(xyx
-1)) =φ(wA(y)). 

then φ(rÁ(xyx-1))=φ(rÁ(y)). 

then φ(wÁ(xyx
-1))=φ(wÁ(y)). 

Thus for all x, y∈H and from Eqs. (31)-(34) we get that 

Then φ(A)∈NICFN(H). 

Proposition 13. Let H be a commutative group and B=(μB, ϑB)∈NIFCN(H). If φ :G →H be a group 

homomorphism, then φ-1(B)∈NIFCN(G). 

Proof: From Proposition 11, we get that φ-1(B)∈IFCN(G). Let x, y∈G then 

φ(rA(xyx
-1))=sup{rA(w) | w∈G, φ(w)= xyx

-1} 

=sup{rA(w) | w∈G, φ(w)=φ(u)φ(w)φ(u
-1)} 

=sup{rA(w) | w ∈ G, φ(w) = φ(uwu
-1)} 

=sup{rA(uwu
-1) | w ∈ G, φ(uwu -1)=y} 

=sup{rA(w) | w ∈ G, φ(w)=y} 
=φ(rA(y)), 

(31) 

φ(wA(xyx
-1))=sup{wA(w) | w∈G, φ(w)= xyx

-1} 

=sup{wA(w) | w∈G, φ(w)=φ(u)φ(w)φ(u
-1)} 

 =sup{wA(w) | w ∈ G, φ(w) = φ(uwu
-1)} 

=sup{wA(uwu
-1) | w ∈ G, φ(uwu -1)=y} 

=sup{wA(w) | w ∈ G, φ(w)=y} 
=φ(wA(y)), 

(32) 

φ(rÁ(xyx
-1))=inf{rÁ(w) | w∈G, φ(w)= xyx

-1} 

 =inf{rÁ(w) | w∈G, φ(w)=φ(u)φ(w)φ(u
-1)} 

=inf{rÁ(w) | w ∈ G, φ(w) = φ(uwu
-1)} 

=inf{rÁ(uwu
-1) | w ∈ G, φ(uwu -1)=y} 

=inf{rÁ(w) | w ∈ G, φ(w)=y} 

=φ(rÁ(y)), 

(33) 

φ(wÁ (xyx
-1))=inf{wÁ (w) | w∈G, φ(w)= xyx

-1} 

=inf{wÁ (w) | w∈G, φ(w)=φ(u)φ(w)φ(u
-1)} 

=inf{wÁ (w) | w ∈ G, φ(w) = φ(uwu
-1)} 

=inf{wÁ (uwu
-1) | w ∈ G, φ(uwu -1)=y} 

=inf{wÁ (w) | w ∈ G, φ(w)=y} 

=φ(wÁ (y)), 

(34) 

φ(A)(xyx -1)=(φ(μA)(xyx
-1), φ(ϑA)(xyx

-1)) 

=(φ(rA)(xyx
-1))e iφ(wA)(xyx

-1), φ(rÁ)(xyx
-1)e iφ(wÁ)(xyx

-1)) 

=(φ(rA)(y))e
iφ(wA)(y), φ(rÁ)(y)e

iφ(wÁ)(y)) 

=(φ(μA)(y), φ(ϑA)(y)) 

=φ(A)(y), 

 



111 

 

In
tu

it
io

n
is

ti
c
 f

u
z
z
y
 c

o
m

p
le

x
 s

u
b

g
ro

u
p

s 
w

it
h

 r
e
sp

e
c
t 

to
 n

o
rm

s 
(t

,s
) 

 

and thus φ-1(rB)(xyx
-1)= φ-1(rB)(y). 

so φ-1(wB)(xyx
-1)=φ-1(wB)(y). 

then  φ-1(rB́)(xyx
-1)=φ-1(rB́)(y). 

thus (wB́ )(xyx
-1)=φ-1(wB́ )(y).  Therefore  Eqs. (35)-(38) give us that 

Thus φ-1(B)∈NIFCN(G). 

Proposition 14. Let A=(μA, ϑA)∈IFCN(G) and B=(μB, ϑB)∈IFCN(G) such that A⊑B.  

If φ :G→H is a group homomorphism, then φ(A)⊑φ(B). 

Proof:  Let A=(μA, ϑA)∈IFCN(G) and B=(μB, ϑB)∈IFCN(G) such that μA= rAe iwA and  ϑA(x)=rÁe
iwÁ  and 

μB=rBe
iwB and ϑB(x)= rB́e

iwB́ . Using Proposition 10. we will have that 

And 

 

 Let x, y∈H and u, v∈G then 

φ-1(rB)(xyx
-1)=rB(φ(xyx

-1)) 

=rB(φ(x)φ(y)φ(x
-1)) 

 =rB(φ(x)φ(y)φ
-1(x)) 

 =rB(φ(y)) 

 =φ-1(rB)(y), 

(35) 

φ-1(wB)(xyx
-1) = wB(φ(xyx

-1)) 

=wB(φ(x)φ(y)φ(x
-1)) 

=wB(φ(x)φ(y)φ
-1(x)) 

=wB(φ(y)) 

=φ-1(wB)(y), 

(36) 

φ-1(rB́)(xyx
-1) = rB́(φ(xyx

-1)) 

 =rB́(φ(x)φ(y)φ(x
-1)) 

= rB́(φ(x)φ(y)φ
-1(x)) 

= rB́(φ(y)) 

= φ-1(rB́)(y), 

(37) 

φ-1(wB́ )(xyx
-1) = wB́ (φ(xyx

-1)) 

=wB́ (φ(x)φ(y)φ(x
-1)) 

= wB́ (φ(x)φ(y)φ
-1(x)) 

= wB́ (φ(y)) 

=φ-1(wB́ )(y). 

(38) 

φ-1(rB́)(xyx
-1) = rB́(φ(xyx

-1)) 

 =rB́(φ(x)φ(y)φ(x
-1)) 

= rB́(φ(x)φ(y)φ
-1(x)) 

= rB́(φ(y)) 

= φ-1(rB́)(y), 

 

φ(A)=(φ(μA), φ(ϑA))=(φ(rA)e
iφ(wA)), φ(rÁ)e

iφ(wÁ)))∈ICFN(H),  

φ(B)=(φ(μB), φ(ϑB))=(φ(rB)e
iφ(wB)), φ(rB́)e

iφ(wB́ )))∈ ICFN(H).  
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and so φ(rA)(xyx
-1)≥T(φ(rA)(y), φ(rB)(x)). 

 

 

 

and so φ(wA)(xyx
-1)≥min{φ(wA)(y), φ(wB)(x)}, 

thus φ(rA)(xyx
-1)≤S(φ(rÁ)(y), φ(rB́)(x)). 

and so φ(wÁ )(xyx
-1)≤max{φ(wÁ )(y), φ(wB́ )(x)}. 

Thus using Eqs. (39)-(42) we will have that φ(A)⊑φ(B). 

Proposition 15. Let A=(μA, ϑA)∈IFCN(H) and B=(μB, ϑB)∈IFCN(H) such that A⊑B.  

If φ :G→H is a group homomorphism, then φ-1(A)⊑φ-1(B). 

Proof: Let A=(μA, ϑA)∈IFCN(H) and B=(μB, ϑB)∈IFCN(H) such that μA= rAe
iwA  and  ϑA(x)=rÁe

iwÁ  

and μB=rBe
iwB and ϑB(x)= rB́eiwB

́
. Using Proposition 11. we will have that 

And 

Let x, y ∈G, then 

φ(rA)(xyx
-1)=sup{rA(z) | z∈G, φ(z)=xyx

-1} 

=sup{rA(uvu
-1) | u, v∈G, φ(u) x, φ(v)=y} 

≥sup{T(rA(v), rB(u)) | φ(u) x, φ(v)=y} 

=T(sup{rA(v) | y=φ(v)},sup{rB(u) | x=φ(u)}) 

=T(φ(rA)(y), φ(rB)(x)), 

(39) 

φ(wA)(xyx
-1)=sup{wA(z) | z∈G, φ(z)=xyx

-1} 

=sup{wA(uvu
-1) | u, v∈G, φ(u) x, φ(v)=y} 

≥sup{min{wA(v), wB(u)} | φ(u) x, φ(v)=y} 

=min{sup{wA(v) | y=φ(v)},sup{wB(u) | x=φ(u)}} 

=min{φ(wA)(y), φ(wB)(x)}, 

(40) 

φ(rÁ)(xyx
-1)=sup{rÁ(z) | z∈G, φ(z)=xyx

-1} 

=inf{rÁ(uvu
-1) | u, v∈G, φ(u) x, φ(v)=y} 

≤inf{S(rÁ(v), rB́(u)) | φ(u) x, φ(v)=y} 

=S(inf{rÁ(v) | y=φ(v)},inf{rB́(u) | x=φ(u)}) 

 =S(φ(rÁ)(y), φ(rB́)(x)), 

(41) 

φ(wÁ )(xyx
-1)=inf{wÁ (z) | z∈G, φ(z)=xyx

-1} 

=inf{wÁ (uvu
-1) | u, v∈G, φ(u) x, φ(v)=y} 

≤inf{max{wÁ (v), wB́ (u)} | φ(u) x, φ(v)=y} 

=max{inf{wÁ (v) | y=φ(v)},inf{wB́ (u) | x=φ(u)}} 

= max{φ(wÁ )(y), φ(wB́ )(x)}, 

(42) 

φ-1(A)=(φ-1(μA), φ
-1(ϑA))= (φ

-1(rA)e
iφ-1(wA)), φ-1(rÁ)e

iφ-1(wÁ))) ∈ICFN(G).  

φ-1(B)=(φ-1(μB), φ
-1(ϑB))= (φ

-1(rB)e
iφ-1(wB)), φ-1(rB́)e

iφ-1(wB́ ))) ∈ ICFN(G).  
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Then  φ-1(rA)(xyx
-1)≥T(φ-1(rA)(y), φ

-1(rB)(x)). 

thus  φ-1(wA)(xyx
-1)≥min {φ-1(wA)(y), φ

-1(wB)(x)}. 

so φ-1(rÁ)(xyx
-1)≤S(φ-1(rÁ)(y), φ

-1(rB́)(x)). 

thus φ-1(wÁ )(xyx
-1)≤max{φ-1(wÁ )(y), φ

-1(wB́ )(x)} . 

Thus Eqs. (43)-(46) give us that φ-1(A)⊑φ-1(B). 

7 | Conclusion and Open Problem 

In this study, intuitionistic fuzzy complex subgroups with respect to t-norm T and s-norm sare defined  

and investigated some properties of them. Later, the inverse, composition, intersection and normality of 

them are introduced and we proved some basic new results and present some properties of them. Now 

one can investigate intuitionistic fuzzy  complex submodules with respect to t-norm T and s-norm S as we 

did and this can be an open problem. We would like to thank the reviewers for carefully reading the 

manuscript and making several helpful comments to increase the quality of the paper. 
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φ-1(rA)(xyx
-1) = rA(φ(xyx

-1)) 

=rA(φ(x)φ(y)φ(x
-1)) 

= rA(φ(x)φ(y)φ
-1(x)) 

≥ T(rA(φ(y)), rB(φ(x))) 

=T(φ-1(rA)(y), φ
-1(rB)(x)), 

(43) 

φ-1(wA)(xyx
-1) = wA(φ(xyx

-1)) 

=wA(φ(x)φ(y)φ(x
-1)) 

=wA(φ(x)φ(y)φ
-1(x)) 

≥ min{wA(φ(y)), wB(φ(x))} 

=min{φ-1(wA)(y), φ
-1(wB)(x)}, 

(44) 

φ-1(rÁ)(xyx
-1) =rA(φ(xyx

-1)) 

=rÁ(φ(x)φ(y)φ(x
-1)) 

=rÁ(φ(x)φ(y)φ
-1(x)) 

≤S(rÁ(φ(y)), rB́(φ(x))) 

=S(φ-1(rÁ)(y), φ
-1(rB́)(x)), 

(45) 

φ-1(wÁ )(xyx
-1)=wÁ (φ(xyx

-1)) 

=wÁ (φ(x)φ(y)φ(x
-1)) 

=wÁ (φ(x)φ(y)φ
-1(x)) 

≤max{wÁ(φ(y)), wB́ (φ(x))} 

= max{φ-1(wÁ)(y), φ
-1(wB́ )(x)}, 

(46) 
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