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Abstract 

 

1 | Introduction  

One of the most crucial factors in economic and social activities is the transportation problem, which 

plays a fundamental role in management science and operations research. Transportation models 

offer a robust framework for effectively supplying goods to customers. Precisely, the transportation 

problem involves the shipment of homogeneous goods from multiple sources (Plants) to distinct 

destinations (warehouses). The main objective of this problem is to identify an optimal shipping 

schedule that minimizes the overall transportation cost (or maximizes the total transportation profit), 

all while ensuring compliance with the supply and demand constraints. Linear Fractional 

Programming (LFP) problems, which belong to the realm of Non-Linear Programming (NLP), 

constitute a specialized category within this domain, where the objective function and constraints are 

expressed as ratios of linear functions. The objective of LFP problems is to ascertain the best 

allocation of available resources, considering specific requirements. These problems often involve 

combining resources such as land, machinery, labor, and materials to produce different products. The 

objective of LFP is to determine the allocation of resources that optimizes specific performance 
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indicators, including minimizing the unit cost of production, maximizing the profit-to-cost ratio, or 

optimizing the ratio between the total delivery speed and waste along the shipping route. Linear 

fractional models find applications in real-life scenarios such as hospital planning, healthcare, 

construction planning, commercial planning, and economics. Extensive research has been conducted 

on solving LFP problems. Charnes and Cooper [1] introduced the LFP model and developed a duality 

theory-based algorithm to solve LFP problems. Subsequently, various algorithms, including the 

Charnes-Cooper transformation [2], parametric approach [3], column generation approach [4] and 

penalty function methods [5], have been proposed to address LFP problems. In many practical 

optimization problems, some or all the problem parameters cannot be precisely determined due to 

incomplete information or a lack of knowledge. Fuzzy set theory, introduced by Zadeh [6], provides a 

mathematical framework for modeling uncertainty and vagueness. Fuzzy linear programming, which 

incorporates fuzzy parameters in the constraints and objective function of linear programming 

problems, has gained significant attention. Bellman and Zadeh [7] were the first to propose a fuzzy 

decision-making process based on fuzzy goals and fuzzy constraints. Tanaka et al. [8] developed an 

interactive fuzzy linear programming method by introducing the concept of a fuzzy feasible solution 

region. Maleki et al. [23] proposed a method for solving multi-objective fuzzy linear programming 

problems using comparison functions. Jiménez and Verdegay [9] described models and methods for 

solving fuzzy linear programming problems where the objective function coefficients and constraint 

right-hand sides are represented by fuzzy numbers. In recent years, several researchers have focused on 

solving fuzzy LFP problems. Chang and Hung [10] proposed a method based on the Charnes-Cooper 

transformation to find the fuzzy optimal solution and corresponding fuzzy dual solution of a fuzzy linear 

fractional program. Their study introduced a novel framework that integrating fuzzy logic and random 

variables into a multi-objective LFP model. The proposed approach aimed to optimize inventory 

management by considering multiple conflicting objectives. The results demonstrated the effectiveness 

of the fuzzy random-based approach in improving the overall performance of the inventory system. In 

another study, Khalifa, H.A., and Pavan Kumar [11] proposed a goal programming approach for solving 

multi-objective LFP problems with LR possibilistic variables. Their research focused on developing a 

mathematical framework to handle uncertainties and possible information in the context of LFP. The 

goal programming approach allowed decision-makers to set priorities and achieve satisfactory solutions 

considering multiple objectives. The study highlighted the importance of incorporating possibilistic 

variables in LFP models and illustrated the applicability of the proposed approach through numerical 

examples. Interval-type fuzzy LFP problem in the neuromorphic environment was explored by Khalifa 

and Kumar. [12]. They presented a fuzzy mathematical programming approach to solve this problem. 

By incorporating neuromorphic sets and fuzzy logic, the study aimed to address uncertainties and 

vagueness in the problem parameters. The proposed approach provided a flexible framework for 

decision-making under uncertain conditions, enhancing the robustness and effectiveness of solving 

interval-type fuzzy LFP problems. Also, the authors in [13], present a comprehensive study on solving 

linear interval Fractional Transportation Problems (FTPs) with interval objective functions. The 

objective of the study is to handle uncertainty in the coefficients of the objective function by proposing 

a novel approach that combines interval analysis and optimization techniques. The proposed method 

involves variable transformation, which simplifies the solution process and improves the accuracy of 

the results. In summary, while LFP and fuzzy programming problems have been studied separately, 

relatively little research has addressed fuzzy LFP problems, especially within the transportation problem 

structure. This paper aims to fill this gap by developing an effective algorithm to solve LFP 

transportation problems where some parameters are represented by triangular fuzzy numbers. For more 

details on the theory and algorithms for MOPs, interested readers can refer to [14]. Fractional calculus 

is a mathematical framework that extends the traditional concepts of differentiation and integration to 

non-integer orders. This powerful tool has found widespread applications in various fields, including 

physics, engineering, medicine, and finance [15]–[19]. Several notable papers have contributed to the 

understanding and utilization of fractional calculus [15], [16], [20]–[24]. Fractional calculus provides the 

mathematical basis for understanding and analyzing the behavior of systems involving fractional 

derivatives or integrals, while fractional programming applies these concepts to optimization problems. 

Fractional order operators in the objective function or constraints of Fractional Programming Problems 
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(FPPs) capture the underlying fractional dynamics or characteristics of the problem at hand. By leveraging 

fractional calculus, FPPs can model and optimize systems with non-local or memory-dependent behavior 

more accurately. Fractional order operators in the objective function or constraints reflect the specific 

dynamics or properties of the system being modeled, leading to more robust and effective optimization 

solutions. FPPs appear in numerous practical areas, such as decision problems in management, stock 

cutting, portfolio selection, and game theory. Various approaches have been applied to FPPs with 

significant details. For example, Bitran and Novaes [5], Charnes and Cooper [1], Craven [14], Schaible [25], 

Stancu-Minasian [26], and Schaible and Ibaraki [27]. Charnes and Cooper [1] developed a method 

indicating that the LFP problem can be optimized by solving two linear programming problems. In a 

standard scenario of this kind, a trucking company might seek to identify the most economically efficient 

approach (minimizing cost or maximizing benefit per unit of transported product in LFP) for transporting 

significant volumes of goods from various storage facilities to multiple stores. The zero-point method was 

introduced by Pandian and Natarajan [28] as an alternative approach to determining the optimal solution 

for a traditional transportation problem, eliminating the need for conventional optimality-checking 

methods [28]. Transportation problems in fuzzy environments have gained considerable attention in recent 

years. This section provides a literature review of relevant articles addressing fuzzy transportation 

problems. Kumar [29] proposed the PSK method for solving type-1 and type-3 fuzzy transportation 

problems. The study presented a novel approach that effectively handled uncertainty and imprecision in 

transportation models. The PSK method demonstrated promising results in terms of finding optimal 

solutions, and it was discussed in the context of fuzzy systems applications. In a similar vein, Kumar [30], 

introduced a simple method for solving type-2 and type-4 fuzzy transportation problems. The study 

focused on extending the PSK method to handle higher degrees of fuzziness. The proposed approach 

exhibited efficiency and effectiveness in finding solutions for fuzzy transportation problems, contributing 

to the advancing of fuzzy logic and intelligent systems.  Kumar [31] investigated the application of the PSK 

method for solving vague traffic problems. The study emphasized the importance of addressing uncertainty 

and vagueness in traffic-related issues. By employing the PSK method, the research provided insights into 

finding optimal solutions to traffic problems under uncertain conditions, contributing to the field of 

artificial life research and development. Mohideen and Kumar [32] conducted a comparative study on 

transportation problems in fuzzy environments. The research compared different approaches and 

techniques for solving fuzzy transportation problems and discussed their strengths and limitations. The 

study aimed to provide a comprehensive understanding of the existing methods in the field and their 

applicability in various scenarios. These articles collectively contribute to the body of knowledge on fuzzy 

transportation problems. The PSK method proposed by Kumar [33] and its extensions [32], [34]–[41], 

offer effective approaches to handling uncertainty and imprecision in transportation models. Additionally, 

Senthil and Kumar [42] provide valuable insights into the comparative analysis of different methods for 

solving fuzzy transportation problems. In the real world, the objective coefficients may not be in the form 

of crisp numbers, so in such problems, the numbers are considering as fuzzy. The proposed method helps 

us solve FTPs with fewer calculations than the modified distribution method for FTPs in [43]. The 

modified distribution method, commonly referred to as the MODI method, is employed to obtain a 

minimum-cost solution for the transportation problem. This method involves initially obtaining an initial 

solution and subsequently optimizing it through a series of calculations to attain the optimal solution. 

However, the proposed method achieves the optimal solution of the transportation problem with the least 

number of calculations. The following objectives collectively aim to provide an efficient and effective 

approach for solving FTPs while minimizing computational complexity and leveraging existing problem-

solving techniques. 

 Propose a method for solving FTPs. 

 Obtain a feasible solution for FTPs. 

 Optimize the feasible solution using a modified distribution method. 

 Address the complexity and computational demands associated with solving FTPs. 

 Overcome the challenges of automation in solving FTPs. 

 Handle deficit transportation issues involving multiple origins and destinations. 

 Optimize single-objective transport problems instead of directly solving fractional transport problems. 
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 Reduce the number of calculations required for solving FTPs. 

 Enable the utilization of linear programming problem-solving software with fewer linear calculations. 

The organization of the paper is as follows: Section 2 presents necessary the definitions and preliminaries 

related to the Fractional Transportation Simplex Method (FTSM). Section 3 describes the proposed 

method. To demonstrate the efficiency of our approach, Section 4 includes solved numerical examples. 

Finally, Section 5 provides a summary of the paper. 

2 | Preliminaries  

Linear Fractional Transportation Problems (LFTPs) is a special case of  LFP problems. Hence, like a 

typical LFP problem, solving a LFTP Problem involves two main phases [44]: 

I. Obtaining an initial Basic Feasible Solution (BFS). 

II. Iteratively refining the current BFS to meet the optimality criterion. 

Since the process of finding the initial BFS for LFTP follows the same approach as in the case of LFP, 

the emphasis will be placed on the second phase. 

To provide a general overview, an LFTP typically consists of the following components: 

I. A set of m supply stores responsible for shipping goods. 

II. A set of n demand points (or shops) that receive the shipped goods. 

III. Profit coefficients pij, which determine the profit pij obtained by the transportation company when 

transporting one unit of goods from a supply store to a specific demand point j. 
IV. Cost coefficients dij, which represent the cost dij associated with transporting one unit of goods from a 

supply store to a particular demand point j. 

Consider the below LFTP:  

Subject to 

From this point forward, it is assumed that D(x) is greater than zero for all x belonging to the set S, 

which is defined by Eq. (1) to Eq. (3) and represents a feasible solution space. Additionally, it is assumed 

that ai and bj are greater than zero for all i ranging from 1 to m and j ranging from 1 to n, respectively. 

Finally, it is assumed that the total demand is equal to the total supply.  i.e. . The objective 

coefficients in a linear transportation problem aim to minimize the total cost of transportation (or 

maximize the total profit for transportation). Nevertheless, in LFTPs, the objective coefficients are 

formulated to either maximize the ratio of the total delivery speed to the total waste along the shipping 

route or maximize the ratio of the total profit to the total cost [24]. 

Definition 1 ([43]). A set  is said to be feasible for LFTP if 

satisfies Eqs. (2) and (3).  

(1) 

(2) 

(3) 
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Definition 2 ([44]). Consider the set R of real numbers. A fuzzy number, denoted by a ̃, can be described 

as a mapping that satisfies the following conditions 

I.  is continuous.  

II. on  is ascending and continuous.  

III. on  is descending and continuous.  

Where  and  are real numbers and fuzzy number is shown as  and it is called a 

trapezoidal fuzzy number.  

Definition 3 ([44]). If �̃� is a trapezoid fuzzy number, the membership function is as follows: 

Definition 4 ([4]). The α-cut set of a fuzzy number , denoted by , can be defined as follows: 

Definition 5 ([4]). If �̃� is a fuzzy number, then the robust ranking technique is defined as follows:  

where  represents the 𝛼-cut of the fuzzy number .  

Definition 6 ([4]). Consider two fuzzy numbers,  and . The following statements hold true: 

I.   if and only if  

II.  if and only if  

III.   if and only if  

Definition 7 ([4]). Consider  and  as two trapezoidal fuzzy numbers 

then: 

I. 

II. 

III. 

IV. 

Where  

And 
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V. 

3 | The Proposed Method 

In the real world, objective coefficients in transportation problems may not always be precise or crisp 

numbers. In such cases, these coefficients are considered as fuzzy numbers. The proposed method 

offers a solution for FTPs that requires fewer calculations compared to the modified distribution 

method presented in [10]. The objective of the modified distribution method, commonly referred to as 

the MODI method, is to obtain a solution to the transportation problem that minimizes the overall cost. 

It involves obtaining an initial solution and then optimizing it through numerous calculations to reach 

the optimal solution. In contrast, the proposed method achieves the optimal solution of the 

transportation problem with significantly fewer calculations. Next, we formulate two separate linear 

programming problems based on the given LFTP, each focusing on a single objective. The construction 

of these problems is as follows:  

(N) Maximize , Eq. (1) to Eq. (3), and (D) Minimize 

, Eq. (1) to Eq. (3). 

Furthermore, it is assumed that and for i=1, 2, ..., m; j = 1, 2, ..., n, indicating positive values 

for the supply stores and demand points. Additionally, the total demand is equal to the total supply, i.e. 

for problem (N) and problem (D). 

Inspired by the work in [28], the two below theorems that connect the solutions of LFTP, the problem 

(D), and the problem (N) are proved to be used in the proposed method.  

Theorem 1 ([28]). Consider  as an optimal solution of (N). Suppose that  be a BFSs sequence 

of (D) in which and  by applying the simplex 

method, the solution  is regarded as the initial feasible solution, and subsequently,  represents the 

optimal solution for the LFTP problem. 

Proof: the proof is in [28]. 

Theorem 2 ([28]). Consider  as an optimal solution of (N). Suppose that  be a BFSs sequence 

of (D) in which  for all k=0, 1, 2, ..., n. Let  be an optimal solution for problem 

(D) obtained by utilizing the simplex method, with  considered as the initial feasible solution. 

Consequently,  is regarded as the optimal solution for the LFTP problem. 

Proof: the proof is in [28]. 

2.1 | Proposed Method 

In this context, a novel approach is presented for obtaining an optimal solution to the LFTP problem. 

The methodology of the proposed method is outlined as follows: 

The Proposed Method Consists of the Following Steps 

Step 1. Utilize the robust ranking technique to transform the FTP with fuzzy numbers into the FTP 

with classic or crisp numbers. 

Step 2. Formulate the problem as two single objective linear programming problems, denoted as (N) 

and (D). 
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Step 3. Solve problem (N) using the simplex method to obtain the optimal solution, denoted as X0, and 

the corresponding maximum value of the objective function Q, denoted as Q0. 

Step 4. Use X0 as the initial feasible solution for problem (D) and solve it using the simplex method to 

obtain an improved sequence of BFSs {Xn} and the corresponding Q values at each improved BFS.  

Step 5.  

I. If  holds true for all  and  for a given value of n, 

terminate the computation procedure. According to Theorem 1, it can be concluded that is an optimal 

solution to the LFTP problem, and the maximum value of  is achieved at . 

II. If  holds true for all and  represents an optimal solution to 

problem (D) for a specific value of n, halt the computation procedure. As per Theorem 2, it can be inferred 

that is an optimal solution to the LFTP problem, and the maximum value of  is attained at 

. 

3 | Numerical Examples 

In this section, we give some illustrative numerical examples to solve LFTP problems. 

Example 1. Suppose we are considering a single objective, which is to maximize the ratio of the total 

delivery speed to the total waste along the shipping route. In this case, we are using fuzzy numbers to 

represent the values. The fuzzy number representation of the ratio of the total delivery speed to the total 

waste along the shipping route is shown in Table 1 [44]. 

Table 1. Fractional transportation table with fuzzy numbers. 

 

 

 

 

Through the utilization of the robust ranking technique, it becomes feasible to convert bi-objective 

transportation problems, which encompass fuzzy numbers, into bi-objective transportation problems that 

employ classic or crisp numbers. The resultant problem will exhibit the following characteristics, as 

depicted in Table 2: 

Table 2. Fractional transportation table with crisp numbers [42]. 

 

 

 

 

From the problem, we formulate two linear programming problems, denoted as (N) and (D), as illustrated 

in Tables 3 and 4, respectively. 

Destination→ 
Source↓ 

1 2 3 4 Supply 

1 (9, 10, 10, 11) 
(12, 14, 17, 17) 

(13, 13, 14, 16) 
(11, 11, 13, 13) 

(6, 7, 9, 10) 
(14, 14, 17, 19) 

(10, 10, 13, 15) 
(5, 7, 9, 11) 

150 

2 (7, 8, 8, 9) 
(8, 9, 11, 12) 

(9,11,13,15) 
(5,5,7,7) 

(10, 13, 16, 17) 
(10, 11, 14, 17) 

(6,6,9,11) 
(9,11,13,15) 

250 

3 (7, 8, 10, 11) 
(10, 13, 14, 15) 

(4, 5, 6, 9) 
(13, 14, 16, 17) 

(12, 15, 16, 17) 
(9, 11, 12, 16) 

(7, 9, 10, 10) 
(7, 8, 11, 14) 

200 

Demand 140 180 120 16  

Destination→ 

Source↓ 

1 2 3 4 Supply 

1 10 
15 

14 
12 

8 
16 

12 
8 

150 

2 8 
10 

12 
6 

14 
13 

8 
12 

250 

3 9 
13 

6 
15 

15 
12 

9 
10 

200 

Demand 140 180 120 160  
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 Table 3. Problem (N). 

 

 

 

 Table 4. Problem (D). 

 

 

 

The optimal solution of (N) is as follows: 

 and the value of  . Subsequently, 

the optimal solution obtained from problem (N) can be employed as the initial simplex solution for 

problem (D), as depicted in Table 5. 

Table 5. The optimal solution of (N) as an initial simplex 

solution to (D). 

 

 

 

 

The value of Q for each improved BFS is determined by employing the modified distribution method. 

Now, the variables  and  enter and leave from the basis, respectively. A rectangular loop (3,4)-

(2,4)-(2,1)-(3,1)-(3,4) is constructed. Therefore, we have the reduced table as follows (Table 6): 

 Table 6. Improved table. 

 

 

 

 

The optimal solution of (D) is  and the value of  

. Since based on Step 4 of the proposed method, the optimal solution for the 

aforementioned LFP problem is determined to be 

 and Max   

Destination→ 

Source↓ 

1 2 3 4 Supply 

1 10 14 8 12 150 
2 8 12 14 8 250 
3 9 6 15 9 200 
Demand 140 180 120 160  

Destination→ 

Source↓ 

1 2 3 4 Supply 

1 15 12 16 8 150 
2 10 6 13 12 250 
3 13 15 12 10 200 

Demand 140 180 120 160  

Destination→ 

Source↓ 

1 2 3 4 Supply 

1 15 
        

12 16 8 
  150 

150 

 2 10 
 60 

6 
    180 

13 12 
 10 

250 

3  13 
 80 

15 12 
 120 

10 200 

Demand 140 180 120 160  

Destination→ 

Source↓ 

1 2 3 4 Supply 

1 15 
         

12 16 8 
  150 

150 

2 10 
  70 

6 
  180 

13 12 
        

250 

3 13 
 70 

15 12 
 120 

10 
10 

200 

Demand 140 180 120 160  
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Example 2. Suppose that there are single objectives being considered: the second objective function aims 

to maximize the ratio of the total profit to the total cost. The values associated with this objective function 

are represented as fuzzy numbers and are presented in Table 7 as follows: 

Table 7. Fractional transportation table with fuzzy numbers. 

 

 

 

 

Through the utilization of the robust ranking technique, bi-objective transportation problems that 

incorporate fuzzy numbers can be transformed into bi-objective transportation problems that utilize crisp 

or classic numbers. This conversion process leads to a resulting problem that possesses the following 

characteristics, as illustrated in Table 8. 

Table 8. Fractional transportation table with crisp numbers [42]. 

 

 

 

 

We can find the two LP problems (N) and (D) from the above problem as follows (Tables 9 and 10): 

Table 9. Problem (N). 

 

 

 

And problem (D): 

 Table 10. Problem (D). 

 

 

 

 

The optimal solution of (N) is   and the value of 

. Now, we use the optimal solution of (N) as an initial simplex solution to (D) as follows (Table 
11): 

Destination→ 

Source↓ 

1 2 3 4 Supply 

1 (2, 3, 5, 6) 
(0, 1, 1, 2) 

(3, 5, 8, 10) 
(1, 2, 3, 6) 

(2, 3, 6, 9) 
(1, 2, 5, 8) 

(0, 1, 3, 4) 
(5, 5, 7, 7) 

180 

2 (1, 1, 2, 4) 
(2, 4, 5, 5) 

(3, 5, 6, 6) 
(1, 2, 3, 6) 

(0, 0, 2, 2) 
(4, 4, 7, 8) 

(2, 3, 5, 6) 
(0, 1, 3, 4) 

220 

3 (1, 1, 2, 4) 
(3, 4, 6, 7) 

(0, 0, 1, 3) 
(1, 3, 4, 4) 

(2, 2, 5, 7) 
(2, 2, 3, 5) 

(2, 2, 4, 4) 
(1, 2, 2, 3) 

200 

Demand 130 190 120 160  

Destination→ 

Source↓ 

1 2 3 4 Supply 

1 4  
1 

6 
3 

5 
4 

2 
6 

180 

2 2 
4 

5 
3 

1 
6 

4 
2 

220 

3 2 
5 

1 
3 

4 
3 

3 
2 

200 

Demand 130 190 120 160  

Destination→ 

Source↓ 

1 2 3 4 Supply 

1 4  6 5 2 180 
2 2 5 1 4 220 
3 2 1 4 3 200 
Demand 130 190 120 160  

Destination→ 

Source↓ 

1 2 3 4 Supply 

1 1 3 4 6 180 

2 4 3 6 2 
 

220 

3 5 3 3 2 
 

200 

Demand 130 190 120 160  
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Table 11. The optimal solution of (N) as an initial 
simplex solution to (D). 

         

 

 

 

The value of Q at any improved BFS is found using a modified distribution method. Now, the variables 

 and  enter and leave from the basis, respectively. We construct a rectangular loop (3,2)-(1,2)-

(1,1)-(3,1)-(3,2). Therefore, we have the below-reduced table (Table 12): 

Table 12. Improved table. 

 

 

 

 

The optimal solution of (D) is as follows: 

 and the value of . Since and 

based on Step 4 of the proposed method, the optimal solution for the given LFP problem is as follows: 

Remark 1: The proposed method assumes a certain level of availability and compatibility with linear 

programming problem-solving software. It may limit its applicability in cases where such software is not 

accessible or where alternative problem-solving approaches are preferred. Also, the proposed method 

focuses on optimizing single-objective transport problems rather than directly solving fractional 

transport problems. While this approach reduces computational complexity, it may not capture the full 

complexity of certain fractional transport problems that require multi-objective optimization. 

5 | Conclusion 

In conclusion, this paper presented an approach for solving FTPs by first obtaining a feasible solution 

and then optimizing it using a modified distribution method. However, it is worth noting that this 

method exhibits high complexity and computational demands, posing challenges for automation. 

Moreover, the presence of deficit transportation issues, involving multiple origins and destinations, 

further complicates the problem-solving process. To address these challenges, our proposed method 

adopts a different approach. Instead of directly solving FTPs, we utilize the classic single-objective 

transport problem-solving method. By optimizing single-objective transport problems, we minimize the 

computational burden associated with solving FTPs. This approach also allows for using linear 

programming problem-solving software, which reduces the number of linear calculations required. It is 

important to acknowledge that FTPs remain an active area of research, and future studies may develop 

new methods to tackle multi-objective FTPs. These advancements will contribute to further 

improvements in solving complex transportation problems. In summary, our proposed method offers 

Destination→ 
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a promising solution for FTPs by leveraging the strengths of the single-objective transport problem-solving 

method. By mitigating computational complexity and utilizing existing software tools, we aim to facilitate 

more efficient and effective resolution of FTPs. We look forward to future research endeavors that will 

continue to advance the field of FTPs. In the future, new methods may be developed to solve multi-

objective FTPs. Furthermore, there is potential for the discovery of novel methods to address fractional 

multi-objective FTPs with fuzzy coefficients. 
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