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Abstract 

1 | Introduction  

The fuzzy theory was introduced the first time in 1965 by Zadeh [1]. A fuzzy set is determined by a 

membership function limited to [0, 1]. Until now, there is a giant research construction of fuzzy 

theory as well as its application. The fuzzy set is used in pattern recognition, artificial intelligent, 

decision making, or data mining [2] and [3], and so on. Besides that, the expansion of fuzzy theory is 

also an interesting topic. The interval-valued fuzzy set [4], the type-2 fuzzy set [5], and the 

intuitionistic fuzzy set [6] are all developed from the fuzzy set. They replaced the value type or added 

the other evaluation to the fuzzy set in order to overcome the inadequate simple approach of this 

traditional fuzzy set. Such as in 1986, the intuitionistic fuzzy set of Atanassov [6] builds up the concept 

of the non-membership degree. This supplement gives more accurate results in pattern recognition, 

medical diagnosis and decision making [7]-[9], and so on. In 1998, Smarandache [10] introduced 

           Journal of Fuzzy Extension and Applications 

    www.journal-fea.com 

J. Fuzzy. Ext. Appl. Vol. 1, No. 3 (2020) 139–158. 

Paper Type: Research Paper 

The Picture Fuzzy Distance Measure in Controlling Network 

Power Consumption 

Ngan Thi Roan 1,*  , Salvador Coll2, Marina Alonso2, Juan Miguel Martínez Rubio2, Pedro López2, Fran 

Andujar3, Son Hoang Le4, Manh Van Vu1, Felorentin Smarandache5 
 

1  VNU University of Science, Vietnam National University, Hanoi, Vietnam; roanngan@gmail.com; vuvanmanh@hus.edu.vn. 
2   UPV Universitat Politècnica de València, Spain; Email Address; scoll@eln.upv.es;  malonso@disca.upv.es; jmmr@upv.es;  

plopez@disca.upv.es. 
3   Universidad de Valladolid, Spain; fandujarm@gmail.com. 
4  VNU Information Technology Institute, Vietnam National University, Hanoi, Vietnam; sonlh@vnu.edu.vn. 
5  University of New Mexico, Gallup Campus, USA; fsmarandache@gmail.com. 
 

Citation: 

 Roan, N. T., Coll, S., Alonso, M., Rubio, J. M. M., López, P., Andujar, F.,...& Smarandache, F.          

(2020). The picture fuzzy distance measure in controlling network power consumption. Journal of 

fuzzy extension and application, 1 (3), 139-158. 

Accept: 30/06/2020 Revised:  25/05/2020 Reviewed: 11/04/2020 Received: 20/03/2020 
 

                                       

In order to solve the complex decision-making problems, there are many approaches and systems based on the fuzzy theory 

were proposed. In 1998, Smarandache [10] introduced the concept of single-valued neutrosophic set as a complete development 

of fuzzy theory. In this paper, we research on the distance measure between single-valued neutrosophic sets based on the H-

max measure of Ngan et al. [8]. The proposed measure is also a distance measure between picture fuzzy sets which was 

introduced by Cuong [15]. Based on the proposed measure, an Adaptive Neuro Picture Fuzzy Inference System (ANPFIS) is 

built and applied to the decision making for the link states in interconnection networks. In experimental evaluation on the real 

datasets taken from the UPV (Universitat Politècnica de València) university, the performance of the proposed model is better 

than that of the related fuzzy methods. 

Keywords: Neutrosophic set, Picture fuzzy set, Distance measure, Decision making, Interconnection network, Power 

consumption.     

Licensee Journal 

of Fuzzy Extension and 

Applications. This  rticle 

is an open access article 

distributed under the 

terms and conditions of 

the Creative Commons 

Attribution (CC BY) 

license 

(http://creativecommons.

org/licenses/by/4.0). 

mailto:dastam66@gmail.com
file:///J:/ARTICLES/JFEA/2020/1(3)/10.22105/jfea.2020.249183.1009
http://www.journal-fea.com/
https://orcid.org/0000-0003-2835-2852


 

 

140 

R
o

a
n

 e
t 

a
l.

|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 1

(3
) 

(2
0
2
0
) 

13
9
-1

5
8

 

 

neutrosophic set to generalize intuitionistic fuzzy set by three independent components. Until today, 

many subclasses of neutrosophic sets were studied such as complex neutrosophic sets [11] and [12]. As 

a particular case of standard neutrosophic sets [13] and [14], the picture fuzzy set introduced in 2013 by 

Cuong [15], considered as a complete development of the fuzzy theory, allows an element to belong to 

it with three corresponding degrees where all of these degrees and their sum are limited to [0, 1]. 

Concerning extended fuzzy set, some recent publications may be mentioned here as in [16]-[20]. 

As one of the important pieces of set theory, distance measure between the sets is a tool for evaluating 

different or similar levels between them. Some literature on the application of intuitionistic fuzzy 

measure from 2012 to present can be found in [7], [21]-[23]. In 2018, Wei introduced the generalized 

Dice similarity measures for picture fuzzy sets [17]. However, the definition of Wei is without 

considering the condition related to order relation on picture fuzzy sets. In a decision-making model, a 

distance measure can be used to compare the similarities between the sets of attributes of the samples 

and that of the input, such as in predicting dental diseases from images [24]. In this paper, we define the 

concept of the single-valued neutrosophic distance measure, picture fuzzy distance measure, and 

represent the specific measure formula. We prove the characteristics of this formula as well as the 

relation among it and some of the other operators of picture fuzzy sets. The proposed distance measure 

is inspired by the H-max distance measure of intuitionistic fuzzy sets [8]. Hence, it inherits the advantage 

of the cross-evaluation in the H-max and moreover it has the completeness of picture fuzzy 

environment. 

The decision-making problems appear in most areas aiming to provide the optimal solution. Saving 

interconnection network power is always interested, researched and becoming more and more urgent in 

the current technological era. In 2010, Alonso et al. introduced the power saving mechanism in regular 

interconnection network [25]. This decision-making model dynamically increases or reduces the number 

of links based on a thresholds policy. In 2015, they continue to study power consumption control in fat-

tree interconnection networks based on the static and dynamic thresholds policies [26]. In general, these 

threshold policies are rough and hard because they are without any fuzzy approaches, parameter learning 

and optimizing processes. In 2017, Phan et al. [27] proposed a new method in power consumption 

estimation of network-on-chip based on fuzzy logic. However, this fuzzy logic system based on Sugeno 

model [27] is too rudimentary and the parameters here are chosen according to the authors' 

quantification. 

In this paper, aiming to replace the above threshold policy, an Adaptive Neuro Picture Fuzzy Inference 

System (ANPFIS) based on picture fuzzy distance measure is proposed to make the decisions for the 

link states in interconnection networks. ANPFIS is a modification and combination between Adaptive 

Neuro Fuzzy Inference System (ANFIS) [28]-[30], picture fuzzy set, and picture fuzzy distance measure. 

Hence, ANPFIS operates based on the picture fuzzification and defuzzification processes, the picture 

fuzzy operators [18] and distance measure, and the learning capability for automatic picture fuzzy rule 

generation and parameter optimization. In order to evaluate performance, we tested the ANPFIS 

method on the real datasets of the network traffic history taken from the UPV (Universitat Politècnica 

de València) university with related methods. The result is that ANPFIS is the most effective algorithm. 

The rest of the paper is organized as follows. Section 2 provides some fundamental concepts of the 

fuzzy, intuitionistic fuzzy, single-valued neutrosophic, and picture fuzzy theories. Section 3 proposes 

the distance measure of single-valued neutrosophic sets and points out its important properties. Section 

4 shows the new decision-making method named Adaptive Neuro Picture Fuzzy Inference System 

(ANPFIS) and an application of ANPFIS to controlling network power consumption. Section 5 shows 

the experimental results of ANPFIS and the related methods on real-world datasets. Finally, conclusion 

is given in Section 6.  
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2| Preliminary 

In this part, some concepts of the theories of fuzzy sets, intuitionistic fuzzy sets, single-valued neutrosophic 

sets, and picture fuzzy sets are showed. 

Let X  be a space of points. 

Definition 1. [1]. A fuzzy set (FS) A  in X , 

 

is characterized by a membership function, 
A

μ , with a range in 0 , 1 
  

. 

Definition 2. [6]. A Intuitionistic Fuzzy Set (IFS) A  in X , 

 

is characterized by a membership function 
A

μ  and a non-membership function 
A

ν  with a range in 0 , 1 
  

 

such that 
A A

0 μ ν 1   . 

Definition 3. [31]. A Single-Valued Neutrosophic Set (SVNS) A  in X , 

 

is characterized by a truth-membership function 
A

T , an indeterminacy-membership function 
A
I , and a 

false-nonmembership function 
A

T  with a range in 0 , 1 
  

 such that 
A A A

0 T I F 3    .  

Definition 4. [15]. A Picture Fuzzy Set (PFS) A  in X , 

 

is characterized by a positive membership function 
A

μ , a neutral function 
A

η , and a negative membership 

function 
A

ν  with a range in 0 , 1 
  

 such that 
A A A

0 μ η ν 1    . 

We denote that SVNS  X  is the set of all SVNSs in X and PFS  X  is the set of all PFSs inX . We 

consider the sets *N and *P  defined by 

 

 

    
A

A x :μ x x X ,  (1) 

      
A A

A x :μ x , ν x x X ,  (2) 

        
A A A

A x :T x ,I x ,F x x X ,  (3) 

        
A A A

A x :μ x ,η x , ν x x X ,  (4) 

     
 

(5) 

       
 

(6) 
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Definition 5. The orders on *N  and *P  are defined as follows 

     1 1 3 3 1 1 3 3 1 1 3 3 2 2
x y x y ,x y x y ,x y x y ,x y ,x y ,              *x,y P ,  [19]. 

*

1 1 2 2 3 3
x y x y , x y , x y , x , y N .     =  

Clearly, on *P , if x y=  then x y.  

Remark 1. The lattice  *P ,  is a complete lattice [19] but  *P ,=  is not. For example, let 

 x 0.2,0.3,0.5  and  y 0.3,0 ,0.7 , then there is not any supremum value of x  and y  on  *P , .=  

Otherwise, we have    sup x, y 0.3,0 ,0.5  on the lattice  *P , .  We denote the units of  *P ,  as 

follows  *P
0 0,0 , 1  and  *P

1 1,0 ,0  [19]. It is easy to see that *P
0  and *P

1  are also the units on 

 *P , .= Now, some logic operators on PFS  X  are presented. 

Definition 6. [19]. A picture fuzzy negation N  is a function satisfying 

   * * * *

* *

P P P P
: P P , N 0 1 , N 1 0 ,  N  and    x y x y.  N N  

Example 1. For every *x P , then     0 3 1
N x x ,0 , x and    S 3 4 1

N x x ,x , x  are picture fuzzy 

negations, where 
4 1 2 3

x 1 x x x .     

Remark 2. The operator 
0

N  also satisfies     *

0 0
x y x y , x , y P .  ? =N N  

Now, let *x , y , z P  and     *

1 2 3 2 2
I x y P : y x , y , x ,0 y x .      

Definition 7. [19]. A picture fuzzy t-norm T  is a function satisfying 

         * * *: P P P , T x, y T y , x , T T x, y , z T x,T y , z ,   T    *P
T 1 ,x I x , and  

   T x, y T x, z , y z.    

Definition 8. [19]. A picture fuzzy t-conorm S  is a function satisfying 

         * * *: P P P , S x , y S y , x , S S x , y , z S x ,S y , z ,   S    *P
S 0 ,x I x , and  

   S x, y S x, z , y z.    

Example 2.  For all *x , y P ,  the following operators are the picture fuzzy t-norms: 

        0 1 1 2 2 3 3
T x, y min x , y ,min x , y ,max x , y .  



143 

 

T
h

e
 p

ic
tu

re
 f

u
z
z
y
 d

is
ta

n
c
e
 m

e
a
su

re
 i

n
 c

o
n

tr
o

ll
in

g
 n

e
tw

o
rk

 p
o

w
e
r 

c
o

n
su

m
p

ti
o

n
 

  

   1 1 1 2 2 3 3 3 3
T x, y x y ,x y , x y x y .     

        2 1 1 2 2 3 3
T x, y max 0,x y 1 ,max 0,x y 1 ,min 1, x y .       

      3 1 1 2 2 3 3 3 3
T x, y max 0,x y 1 ,max 0,x y 1 , x y x y .        

    4 1 1 2 2 3 3 3 3
T x, y x y ,max 0,x y 1 , x y x y .      

    5 1 1 2 2 3 3 3 3
T x, y max 0,x y 1 , x y , x y x y .      

Example 3.  For all *x , y P ,  the following operators are the picture fuzzy t-conorms: 

        0 1 1 2 2 3 3
S x, y max x , y ,max 0,x y 1 ,min x , y .    

   1 1 1 1 1 2 2 3 3
S x, y x y x y ,x y , x y .    

        2 1 1 2 2 3 3
S x, y min 1, x y ,max 0,x y 1 ,max 0,x y 1 .       

      3 1 1 1 1 2 2 3 3
S x, y x y x y ,max 0,x y 1 ,max 0,x y 1 .        

    4 1 1 1 1 2 2 3 3
S x, y x y x y ,max 0,x y 1 , x y .      

    5 1 1 1 1 2 2 3 3
S x, y x y x y ,x y ,max 0,x y 1 .      

Remark 3. For all *x , y , z P  and y z ,=  the operators 
 i i 0 ,...,5

T


 also satisfy the condition 

   T x, y T x, z .=  Similarly, 
 i i 0 ,...,5

S


 also satisfy    S x, y S x, z .=  

The logic operators N ,T  and S  on *P  are corresponding to the basic set-theory operators on PFS  X  

as follows. 

Definition 9. Let N , T  and S  be the picture fuzzy negation, t-norm and t-conorm, respectively, and 

A,B   PFS  X . Then, the complement of A  w.r.t N  is defined as follows: 

 

the intersection of A   and B   w.r.t T  is defined as follows: 

 

         
A

N

A A
x : μ x ,η x , ν xA xN X ,  (7) 

                  
A A AT B B B

x : μ x ,η x , ν x μ x , η x , νA B , x xT X ,  (8) 
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and the union of A   and B   w.r.t T  is defined as follows: 

 

 

3| The Single-valued Neutrosophic Distance Measure and the 

Picture Fuzzy Distance Measure 

Recently, Wei has introduced the generalized Dice similarity measures for picture fuzzy sets [17]. 

However, the definition of Wei is without considering the condition related to order relation on picture 

fuzzy sets. The new distance measure on picture fuzzy sets is proposed in this section. It is developed 

from intuitionistic distance measure of Wang et al. [32] and Ngan et al. [8]. 

Definition 10. A single-valued neutrosophic distance measure d  is a function satisfying 

* *: N N 0, ,  
d  

   x, y y , x ,d d  

 x, y 0 x y ,  d  

If x y z= =  then    x, y x , zd d  and    y ,z x, z .d d  

Definition 11. A picture fuzzy distance measure d  is a single-valued neutrosophic distance measure 

and   *d x, y 0,1 , x , y P .     
 

Definition 12. The measure 
0

D  is defined as follows 

Proposition 1. The measure 
0

D  is a picture fuzzy distance measure. 

Proof.  Firstly, we have    1 3 3 1
max x , y max x , y 0,1    

 and  

     1 1 2 2 3 3 1 1 2 2 3 3
x y x y x y x y x y x y          

   1 2 3 1 2 3
x x x y y y 2.        

Therefore,     1 1 2 2 3 3 1 3 3 1

1
0 x y x y x y max x , y max x , y .1

3
         

Secondly, we obtain that    0 0
x, y y , xD D  since 

0
D  has the symmetry property between the 

arguments. 

Thirdly,      1 1 2 2 3 3 1 3 3 10
x y x y x y max x , y max x , y 0 x y.x, y 0          D  

                  μ x ,η x ,ν x μ x ,η x ,ν
 

(9) 

              
 

(10) 
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Finally, let x y z= = , then 
1 1 1 2 2 2 3 3 3

x y z , x y z , x y z .       We obtain that 

1 1 1 1 2 2 2 2 3 3 3 3
x y x z , x y x z , x y x z .          

Moreover,        1 13 1 133 3
max ,x max y ,x max x , y max x z .z ,   Hence, 

       1 3 3 1 1 3 3 1 x
max x , y max x , y max x , z max x , z .lim


   . Thus,    0 0

x, y x, z .D D  Similarly, 

we also have    0 0
y ,z x, z .D D  

Remark 4. If d  is a picture fuzzy distance measure, then d  is a single-valued neutrosophic distance 

measure. The opposite is not necessarily true. Some picture fuzzy operations were introduced by the group 

of authors of this paper [18] and [19]. Hence, this research is seen as a complete link to the authors' previous 

work on picture fuzzy inference systems. An inference system of neutrosophic theory will be developed in 

another paper as a future work. 

Proposition 2. Let *x, y P . The measure 
0

D  satisfies the following properties: 

    0 0 S 4

1
N x ,N x x .

3
D =  

If 
2 4

x x ,  then      0 0 0 S 4

1
x ,N x x ,N x x .

3
D D =  

     0 0 0 0 2 2

1
x ,N y N x , y x y .

3
 D D =  

      0 0 0 0 2 2

1
x , y N x ,N y x y .

3
 D D =  

If 
1 3 1 3

x x y y   , then       0 0 S S
x, y N x ,N y .D = D  

If 
1 3 1 3

x x y y   , then      0 S 0 S
x,N y N x , y .D = D  

  0 0 1 3 2

1
x ,N x x x x .

3
 D =  

  0 S 1 3 2 4

1
x ,N x x x x x .

3
  D =  

   *0 1 2 3P

1
x , 1 2 2x x x .

3
  D =  

   *0 3 1 2P

1
x ,0 2 2x x x .

3
  D =  

 * *0 P P
0 ,1 1.D =  
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  0 0
x,N x 1D =  if and only if  * *P P

x 0 ,1 .   

  0 S
x,N x 1D =  if and only if  * *P P

x 0 ,1 .  

  0 0
x,N x 0D =  if and only if 

1 3 2
x x , x 0.    

  0 S
x,N x 0D =  if and only if 

1 3 2 4
x x , x x .    

              0 0 0
0,0 ,0 , 0 ,a,0 0,0 ,0 , a,0 ,0 0,0 ,0 , 0 ,0 ,aD D = D  

               0 0 0
a,0 ,0 , 0 ,0 ,a a,0 ,0 , 0 ,a,0 0,0 ,a , 0 ,a,0 , a 0,1 .     

D D D   

Proof.  These properties are proved as follows: 

We have          0 0 S 0 3 1 3 4 1
N x ,N x x ,0, x , x , x , xD = D  

    3 3 4 1 1 3 1 3 1 4

1 1
x x 0 x x x max x , x max x , x x .

3 3
         

We have  

               0 0 0 S 0 1 2 3 3 1 0 1 2 3 3 4 1
x ,N x x ,N x x , x , x , x ,0 , x x , x , x , x , x , x D D = D D  

    1 3 3 1 12 1 3 3

1
x x 0 x x max x , x max x , xx

3
        

    1 3 4 3 12 1 1 3 3

1
x x x x x max x , x ma x

3
,x x x         

2 4 42
x x .

3 3

1 1
x x     

We have  

               0 0 0 0 0 1 2 3 3 1 0 3 1 1 2 3
x ,N y N x , y x , x , x , y ,0 , y x ,0 , x , y , y , y D D = D D  

    1 3 3 1 12 1 3 3

1
x y 0 x y max x , y max y , xx

3
        

    3 1 2 1 3 3 3 1 1

1
x y 0 y x y ma

3
x x , y max y , x      

2 2

1
x y .

3
   

We have  

                0 0 0 0 0 1 2 3 1 2 3 0 3 1 3 1
x , y N x ,N y x , x , x , y , y , y x ,0 , x , y ,0 , y D D = D D  
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    1 1 2 2 3 3 1 3 3 1

1
x y x y x y ma

3
x x , y max x , y        

    3 3 1 1 3 1 3 1

1
x y 0 0 x y max x , m

3
y ax y , x      

2 2

1
x y .

3
   

We have          0 S S 0 3 4 1 3 4 1
N x ,N y x ,x , x , y , y , yD D  

    3 3 4 4 1 1 3 1 3 1

1
x y x y x y max x , y a x

3
m x y , .       Further, 

   4 4 1 2 3 1 2 3 2 2
x y 1 x x x 1 y y y x y           . Thus,       0 S S 0

N x ,N y x, y .D D  

We have        0 S 0 1 2 3 3 4 1
x,N y x ,x , x , y , y , yD = D  

    1 3 2 4 3 1 1 1 3 3

1
x y x y x y max x , y a x

3
m x y , .       In other hand, 

       0 S 0 3 4 1 1 2 3
N x , y x ,x , x , y , y , yD D   

    3 1 4 2 1 3 3 3 1 1

1
x y x y x y max x , y a x

3
m x y , .       Further,  

2 4 2 1 2 3 2 1 2 3 2 4
x y x 1 y y y x 1 x y x y x .             Thus, 

     0 S 0 S x
x ,N y N x , y .lim


D = D  

We have        0 0 0 1 2 3 3 1
x,N x x ,x , x , x ,0 , xD = D  

    1 3 1 1 3 33 2 1 1 3 2

1
x 0 x max x , x max x , x

1
x x x x x x .

3 3
          

We have  

       0 S 0 1 2 3 3 4 1
x,N x x ,x , x , x , x , xD = D

    3 21 3 1 1 34 1 1 3 2 43

1
x x max x ,

1
x x x x xx max x , x

3
x x x .

3
            

We have       *0 0 1 2 3P
x,1 x , x , x , 1,0 ,0D = D  

      21 3 1 3 1 2 3

1
x 1 0 x 0 max x ,0

1
max x ,x 2 2x x x .

3
1

3
           

We have       *0 0 1 2 3P
x,0 x , x , x , 0 ,0 , 1D = D  

      21 3 1 3 3 1 2

1
x 0 0 x 1 max x , 1

1
max x ,x 2 2x x x .

3
0

3
           

We have       * *0 0P P
0 ,1 1,0 ,0 , 0 ,0 , 1 1.D = D  



 

 

148 

R
o

a
n

 e
t 

a
l.

|
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 1

(3
) 

(2
0
2
0
) 

13
9
-1

5
8

 

 

Assume that   0 0
x,N x 1,D = we have 

1 3 2

1
x x x 1.

3
  =  Since  1 3 2 1 3 2

1
x x x x x x 1

3
      .  

Therefore,  1 3 2 1 3 2

1
x x x x x x 1.

3
       We obtain that 

2
x 0  and 

1 3
x x 1.   Thus, 

 * *P P
x 0 ,1 . Assume that   0 S

x,N x 1,D = we have 
1 3 2 4

1
x x x x 1.

3
   =  Since 

   1 3 2 4 1 3 2 4

1
x x x x x x x x 1.

3
         We obtain that 

2 4
x x 0   and 

1 3
x x 1.   Thus, 

 * *P P
x 0 ,1 .  Assume that   0 0

x,N x 0,D = we have 
1 3 2

1
x x x 0.

3
  =  Hence, 

2
x 0  and 

1 3
x x .

Assume that   0 S
x,N x 0,D = we have 

1 3 2 4

1
x x x x 0.

3
   =  Hence, 

2 4
x x  and 

1 3
x x .  

We have     0

a
0 ,0 ,0 , 0 ,a,0 ,

3
D  

         0 0

2a
0 ,0 ,0 , a,0 ,0 0 ,0 ,0 , 0 ,0 ,a ,

3
D = D  and  

              0 0 0
a,0 ,0 , 0 ,0 ,a a,0 ,0 , 0 ,a,0 0,0 ,a , 0 ,a,0 a.  D D D   

Remark 5. The order “= ” on *P  corresponds to the following order on PFS  X : 

 

Remark 6. The picture fuzzy distance measure on *P  corresponds to the picture fuzzy distance 

measure on PFS  X , i.e., for all A,B   PFS   1 2 m
X x ,x ,..., x , we have the picture fuzzy distance 

measure 
0

D  between A  and B  as follows: 

 

 

Proposition 3. Consider the picture fuzzy distance measure 
0

D  in Eq. (10), the picture fuzzy t-norms 

i( i 0 ,...,5 )
T


 in Example 2, the picture fuzzy t-conorms i( i 0 ,...,5 )

S


 in Example 3, and the picture fuzzy negation 

0
N  in Example 1. Let A  and B  be two picture fuzzy sets on the universe  1 2 m

X x ,x ,..., x . Then, we 

have the following properties: 

      
2 i j k0 T 0 T T 0 T

D A B,B max D A B,A B ,D A B,B ,      

      
2 i j k0 T 0 T T 0 T

D A B,A max D A B,A B ,D A B,A ,      

0 0 0 0 0 0

2 i j k

N N N N N N

0 T 0 T T 0 T
D A B ,A max D A B ,A B ,D A B ,A ,

                                  
 

                 μ x μ x ,η x η x ,ν x ν x , x X.
 

(11) 

             

          


     

 

 μ x μ x η x η x ν x ν x

μ x ,ν x max ν x ,μ
 

(12) 
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0 0 0 0 0 0

2 i j k

N N N N N N

0 T 0 T T 0 T
D A B ,B max D A B ,A B ,D A B ,B ,

                                  
 

       i , j x , y | x , y 0,...,5 \ 4,5    and k 0 , 1, 3 , 4 , 5.  

      
5 i j k0 S 0 S S 0 S

D A B,A max D A B,A B ,D A B,A ,      

      
5 i j k0 S 0 S S 0 S

D A B,B max D A B,A B ,D A B,B ,      

0 0 0 0 0 0

5 i j k

N N N N N N

0 S 0 S S 0 S
D A B ,A max D A B ,A B ,D A B ,A ,

                                  
 

0 0 0 0 0 0

5 i j k

N N N N N N

0 S 0 S S 0 S
D A B ,B max D A B ,A B ,D A B ,B ,

                                  
 

       i , j x , y | x, y 0,1,3,4,5 \ 1,3    and k 0 , 1, 3 , 4.  

      
2 i j k0 S 0 S S 0 S

D A B,A max D A B,A B ,D A B,A ,      

      
2 i j k0 S 0 S S 0 S

D A B,B max D A B,A B ,D A B,B ,      

0 0 0 0 0 0

2 i j k

N N N N N N

0 S 0 S S 0 S
D A B ,A max D A B ,A B ,D A B ,A ,

                                  
 

0 0 0 0 0 0

2 i j k

N N N N N N

0 S 0 S S 0 S
D A B ,B max D A B ,A B ,D A B ,B ,

                                  
 

i , j 0 , 2 , 3 , 4 ,   and k 0 ,3 , 4.  

   
i j 0 00 T S 0 T S

D A B,A B D A B,A B      and 

0 0 0 0

i j 0 0

N N N N

0 T S 0 T S
D A B ,A B D A B ,A B , i , j 0 , ..., 5.

   
               
   

 

Proof.  These properties are proved as follows. Firstly, we see that for all x , y 0 , 1 ,     

   max 0,x y 1 xy min x, y     and    min 1,x y x y xy max 0,x y 1 .       Hence, 

        1 1 2 2 3 3 1 1 2 2 3 3 3 3
max 0,x y 1 ,max 0,x y 1 ,min 1, x y x y ,x y , x y x y .      = This means 

2 1
T T .=  Similarly, we obtain that 

2 3 4 1 0
T T T T T= = = =  and  

2 3 5 1 0
T T T T T .= = = = Hence,  

2 3 4 1 0T * T * T * T * T *
A B A B A B A B A B A,           
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2 3 5 1 0T * T * T * T * T *
A B A B A B A B A B A,           

2 3 4 1 0T * T * T * T * T *
A B A B A B A B A B B,           and 

2 3 5 1 0T * T * T * T * T *
A B A B A B A B A B B.           

Since 
0

D  is the picture fuzzy distance measure, thus  

      
2 i j k0 T 0 T T 0 T

D A B,A max D A B,A B ,D A B,A      and 

      
2 i j k0 T 0 T T 0 T

D A B,B max D A B,A B ,D A B,B ,      

       i , j x , y | x , y 0,...,5 \ 4,5    and k 0 , 1, 3 , 4 , 5.  Furthermore, we have 

                0

A A A A A

N

0
x : μ x ,η x ,ν x x X x : ν x ,0 x ,XA ,μN x   . 

It is easy to prove the following lemma: If 
*

A B,  then 
0 0N N

*
B A .  Thus, 

0 0 0 0 0 0

2 i j k

N N N N N N

0 T 0 T T 0 T
D A B ,A max D A B ,A B ,D A B ,A

                                  
 and 

0 0 0 0 0 0

2 i j k

N N N N N N

0 T 0 T T 0 T
D A B ,B max D A B ,A B ,D A B ,B ,

                                  
 

       i , j x , y | x , y 0,...,5 \ 4,5    and k 0 , 1, 3 , 4 , 5.  

Secondly, we have 
0 4 3 5

S S S S ,= = =  
0 4 3 2

S S S S ,= = =  and 
0 4 1 5

S S S S .= = =  Hence, 

0 4 3 5* S * S * S * S
A A B A B A B A B,         

0 4 3 5* S * S * S * S
B A B A B A B A B,         

0 4 1 5* S * S * S * S
A A B A B A B A B,         and 

0 4 1 5* S * S * S * S
B A B A B A B A B.         

Therefore       
5 i j k0 S 0 S S 0 S

D A B,A max D A B,A B ,D A B,A ,      

      
5 i j k0 S 0 S S 0 S

D A B,B max D A B,A B ,D A B,B ,      
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0 0 0 0 0 0

5 i j k

N N N N N N

0 S 0 S S 0 S
D A B ,A max D A B ,A B ,D A B ,A ,

                                  
 and 

0 0 0 0 0 0

5 i j k

N N N N N N

0 S 0 S S 0 S
D A B ,B max D A B ,A B ,D A B ,B ,

                                  
 

       i , j x , y | x, y 0,1,3,4,5 \ 1,3    and k 0 , 1, 3 , 4.  

Now, we have 
0 4 3 2* S * S * S * S

A A B A B A B A B         and  

0 4 3 2* S * S * S * S
B A B A B A B A B        . 

Thus, for all i , j 0 , 2 , 3 , 4 ,  and k 0 , 3 , 4 , we have 

      
2 i j k0 S 0 S S 0 S

D A B,A max D A B,A B ,D A B,A     , 

      
2 i j k0 S 0 S S 0 S

D A B,B max D A B,A B ,D A B,B ,      

0 0 0 0 0 0

2 i j k

N N N N N N

0 S 0 S S 0 S
D A B ,A max D A B ,A B ,D A B ,A ,

                                  
 and 

0 0 0 0 0 0

2 i j k

N N N N N N

0 S 0 S S 0 S
D A B ,B max D A B ,A B ,D A B ,B .

                                  
 

Finally, we see that 
2 0 0 5T * T * * S * S

A B A B A A B A B.          

Thus, we obtain that    
2 5 0 00 T S 0 T S

D A B,A B D A B,A B      and the remaining inequalities of 

Proposition 3.     

4| An Application of the Picture Fuzzy Distance Measure for 

Controlling Network Power Consumption 

4.1| The Problem and the Solution 

The interconnection network is important in the parallel computer systems. Saving interconnection 

network power is always interested, researched and becoming more and more urgent in the current 

technological era. In order to achieve high performance, the architectural design of the interconnection 

network requires an effective power saving mechanism. The aim of this mechanism is to reduce the 

network latency (the average latency of a message) and the percentages between the number of links that 

are kept switched on by the saving mechanism and the total number of links [25]. As a simplified way of 

understanding, this is a matter of optimizing the number of links opened in a networking system. This is a 

decision-making problem for the trunk link state. 

In 2010, Alonso et al. introduced the power saving mechanism in regular interconnection network [25]. 

This model dynamically increases or reduces the number of links that compose a trunk link. This is done 
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by measuring network traffic and dynamically turning these individual links on or off based on a 

on off
u / u  threshold policy with keeping at least one operational link (see Fig. 1 and Fig. 2). 

The two parameters 
on

u  and 
off

u  are designed based on different requirements of mechanism 

aggressiveness (controlled by the value 
avg on off

u (u u ) / 2  ) and mechanism responsiveness (controlled 

by the difference 
on off

u u ).  

 

 

 

Fig. 1. Four trunk link states. 

 

 

 

 

 

Fig. 2. The operational mechanism of switches. 

In order to avoid the possibility of cyclic state transitions that makes the system become unstable, the 

following restrictions hold in the selection on  and off : 

Thus, the different values of 
off

u  and 
on

u  that satisfy Eq. (13) are stiffly chosen in order to achieve 

different goals of responsiveness and aggressiveness for the power saving mechanism. In 2015, they 

continue to study and modify power consumption control in fat-tree interconnection networks based 

on the static and dynamic thresholds policies [26]. In general, this threshold policy is hard because it is 

without any fuzzy approaches, parameter learning and optimizing processes. 

In 2017, Phan et al. [27] proposed a new method in power consumption estimation of network-on-chip 

based on fuzzy logic [27]. However, this fuzzy logic system based on Sugeno model is too rudimentary 

and the parameters here are chosen according to the authors' quantification. In this paper, aiming to 

replace the above threshold policy in decision making problem for the trunk link state, we propose a 

higher-level fuzzy system based on the proposed single-valued neutrosophic distance measure in Section 

3. 

4.2| The Adaptive Neuro Picture Fuzzy Inference System (ANPFIS) 

In this subsection, an ANPFIS based on picture fuzzy distance measure is introduced to decision making 

problems. ANPFIS is a modification and combination between ANFIS [28], picture fuzzy set, and 

picture fuzzy distance measure. Hence, ANPFIS operates based on the picture fuzzification and 

  
 

(13) 
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defuzzification processes, the picture fuzzy operators and distance measure, and the learning capability for 

automatic picture fuzzy rule generation and parameter optimization. The model is showed as in the Fig. 3. 

Fig. 3. The proposed ANPFIS decision making model. 

The model has the inputs are number values and the output  i
S , i 1,..., n  is the chosen solution. 

ANPFIS includes four layers as follows: 

Layer 1-Picture Fuzzification. Each input value is connected to three neuros 1

i
O  , in other words is 

fuzzified by three corresponding picture fuzzy sets named “High”, “Medium”, and “Low”. We use the 

Picture Fuzzy Gaussian Function (PFGF): the PFGF is specified by two parameters. The Gaussian 

function is defined by a central value m   and width k 0 . The smaller the k , the narrower the curve is. 

Picture fuzzy Gaussian positive membership, neutral, and negative membership functions are defined as 

follows 

 
 

2

2

x m
μ x exp

2k

 
  

  
 
  
 

, 

    1
ν x c 1 μ x ,   1

c 0 , 1 ,   
 and 

      2
η x c 1 μ x ν x ,    2

c 0 , 1 ,   
where the parameters m and k >  are trained. 

Layer 2-Automatic Picture Fuzzy Rules. The picture fuzzy t-norm T  (see. Definition 7 and Example 2) 

is used in this step in order to establish the IF-THEN picture fuzzy rules, i.e., the links between the neuros 
1

i
O  of Layer 1 and the neuros 2

k
O  of Layer 2 as follows 

“If 1

i
O  is x  and 1

j
O  is y  then 2

k
O  is  T x, y .” 

For examples    λ

1
T x, y T x, y , where [18] 
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 
     

 3 3 3 3 3

1
λ λ λ λλ λ1 1 2 2

1 3 3 3 3

1 1 1 1 1 1 2 2 2 2 2 2

x y x y
T x , y , , x y x y ,

λ 1 λ x y x y λ 1 λ x y x y

 
 
    
         
 

here 

*x , y P ,  and the parameters 1 2 3
λ ,λ ,λ 1, 

 are trained. 

Layer 3 – Calculate the difference to the samples. The difference between the input  and the 

sample  is calculated by the proposed picture fuzzy distance measure 
0

D  in Eq. (10) as follows 

             
         



     

 


m

i 1 i 2 i 1 i 2 i 1 i 2 i
i 1

1 i 2 i 2 i 1

0

i

1
I,K ω . μ x μ x η x η x ν x ν x

3m
max μ x , ν x max μ x , ν x

D

,
 

where, m  is the number of attribute neuro values and 
 i i 1,...,m

ω


 are the trained weights. 

Layer 4-Picture Defuzzification. In this final step, we point out the minimum difference value in all 

values received from Layer 3,    0 t0
I ,KMinD D I ,K .  

Then, the output value of the ANPFIS is the solution 
t

S  which is corresponding to the sample 
t

K .  

4.3| Application of the ANPFIS algorithm in Controlling Network Power 

Consumption 

In this part, we present the installation of ANPFIS algorithm in the trunk link state Controller of 

interconnection network.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. The architecture of the trunk link state controller based on ANPFIS. 

Fig. 4 describes the architecture of the trunk link state Controller based on ANPFIS. This Controller is 

developed from the previous architecture which is proposed by Phan et al. in 2017 for network-on-chip 

[27]. For details, each router input port will be equipped with a traffic counter. These counters count 

the data flits passing through the router in certain clock cycles based on the corresponding response 

signals from the router. The flits through the router is counted in a slot of time. When the counting 
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finish, the traffic through the corresponding port will be calculated [27]. Each port of the router is 

connected with a Counter, then there are four average values of the traffic.  

The Max Average (MA) block receives the values of traffic from the counters which are connected with 

the routers ports. It compares these values and chose the maximum value for Input 1 of the ANPFIS.  

The Derivative (DER) block calculates the derivative of traffics obtained from the counters. This value is 

defined as an absolute value of the traffics change in a unit of time. This value is determined according to 

the maximum traffic value decided by MA block. After that, the DER gives it to the Input 2 of the ANPFIS 

for further processes.  

The value domain of Input 1 and Input 2 is from 0 to the maximum bandwidth value. They are normed 

into [0, 1] by Min Max normalization. 

Through the ANPFIS block, the received Output is the trunk link state  i
S , i 1, 2,3,4 .  The received 

new state are adjusted by the Link State Adjusting block. 

5| Experiments on Real-World Datasets 

5.1| Experimental Environments 

In order to evaluate performance, we test the ANPFIS method on the real datasets of the network traffic 

history taken from the UPV (Universitat Politècnica de València) university with related methods. The 

descriptions of the experimental dataset are presented in Table 1. 

Table 1. The descriptions of the experimental dataset. 

 

 

 

We compare the ANPFIS method against the methods of Hung (M2012) [21], Junjun et al. (M2013) [22], 

Maheshwari et al. (M2016) [23], Ngan et al. (H-max) [8], and ANFIS [28] in the Matlab 2015a programming 

language. The Mean Squared Error (MSE) degrees of these methods are given out to compare their 

performance. 

5.2| The Quality 

The MSE degree of the ANPFIS method are less than those of other methods. The specific values are 

expressed in Table 2. 

Table 2. The performance of the methods. 

 

 

No. elements (checking-cycles) 16.571  
No. attributes 2  
 (MA, DER)  
The normalized value domain of attributes MA DER 
 [0,1] [-1,1] 
No. classes (No. link states) 4  

Method M2012 [21] M2013 [22] M2016 [23] H-max [8] ANFIS [28] ANPFIS 

MSE 
0.2009
  

0.2606 0.2768 0.1259 0.2006 0.0089 
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Fig. 5 clearly show the difference between the performance values of six considered algorithms. In Fig. 

5, the blue columns illustrate the MSE values of the methods. It can be seen that the columns of the 

other methods are higher than that of the ANPFIS method. That means the accuracy of the proposed 

method is better than that of the related methods on the considered dataset. 

Fig. 5. The MSE values of 6 methods. 

 

6| Conclusion 

The neutrosophic theory increasingly attracts researchers and is applied in many fields. In this paper, a 

new single-valued neutrosophic distance measure is proposed. It is also a distance measure between 

picture fuzzy sets and is a development of the H-max measure which was introduced by Ngan et al. [8]. 

Further, an Adaptive NPFIS based on the proposed measure is shown and applied to the decision 

making for the link states in interconnection networks. The proposed model is tested on the real datasets 

taken from the UPV university. The MSE value of the proposed methods is less than that of other 

methods. 
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Abstract 

 

1 | Introduction  

The classical set theory developed by Zadeh [40] was termed as a Fuzzy Set (FS), whose elements 

amuse ambiguous features of true and false membership functions. The FS theory applied in the 

boundless area of a domain, while Atanassov [39] extended this theory as an Intuitionistic Fuzzy Set 

(IFS) theory. Later, Smarandache [21] explored a set that contains one more membership function 

called indeterminacy along with truth and falsity degrees as elements of the Neutrosophic Set (NS). 

Also, he generalized the NS on IFS [22] and recently proposed his work on attributes valued set, 

Plithogenic Set (PS) [23]. Nowadays, this set made an outstanding impact on many applications [1]-

[4], [11]-[15], [16], [18], [19] and play a vital role in Decision Making (DM) problems [10], [17], [20] 

and Multi-Criteria DM (MCDM) problems [5], [9].   
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Topology is a study of flexible objects under frequent damages without splitting. In recent times, 

Topological Space (TS) is performing a lead character in the enormous branch of applied sciences and 

numerous categories of mathematics. The topological structure developed on NS as a generalization of 

IFTS which was originated by Salama & Alblowi [33], [34], named as Neutrosophic Topological Space 

(NTS). Few typical sets, open sets, and other TS explored [7], [24], [27], [28], [29], [31], and extended to 

bi-topological space [6] on such TS. 

The most general class of sets which contains few open sets termed as Fine-Open Sets (FOSs), by Powar 

& Rajak [35], and investigated the special case of generalized TS, called Fine- Topological Space (FTS). 

Many researchers studied this concept on some sets like FS [26], [30], and others [25], [32]. Recently, 

this concept extends as Neutro-Fine Topological Space (NFTS) [8], which was introduced by 

Chinnadurai and Sindhu. The concept of minimal open (closed) and maximal open (closed) sets were 

exhibited by few researchers [36]- [38]. 

The aspiration of this paper is to instigate the collection of open sets such as generalized open and semi-

open sets defined on NFTS. The concept of interior and closure on neutro-fine-semi open sets are 

defined and some of their basic properties are stated. These definitions extend the concept to generalized 

semi-open sets. Moreover, the minimal and maximal open sets are defined and some of their properties 

are studied in this space. Simultaneously, discussed the complement of all these sets as its closed sets. 

The basic properties of the union and intersection of these sets are stated in some theorems. Only a few 

sets satisfy this postulates, and others are disproved as shown in the counterexamples. The converse of 

some theorems is proved in probable examples.  

The layout of this proposal is as follows. In Portion 2, essential definitions of NFTS are recollected. In 

Portion 3, some type of generalized open sets are defined on NFTS and investigated its properties with 

illustrative examples. In Portion 4, some more open sets like neutro-fine minimal open sets and neutro-

fine maximal open sets are explored via perfect examples. In the end, Portion 6 conveyed the 

conclusions with some future works. 

2| Preliminaries 

In this portion, we remind a few major descriptions connected to NFTS. 

Definition 1. [8]. Let W be a set of universe and 
i

w W where i I . Let R be a NS over W. Then 

the subset of NS R with respect to 
i

w  (sub-NS
iw

R ) and 
i j

w ,w (sub-NS
i jw ,w

R ) are denoted as 
R i
ς (w )  

and 
R i j
ς (w ,w ),  and defined as 

i , j R i R j R i R j

R i i R i R i R i

R i R j

k R n R n R n k , l R n R n R n

w ,max T (w ),T (w ) ,max I (w ), I (w ) ,
ς (w ) w ,T (w ), I (w ), F (w ) , ,

min F (w ), F (w )

w ,T (0 ), I (0 ), F (0 ) , w ,T (0 ), I (0 ), F (0 )

        
    
       

      
 
 
   

   





where i I , j I { i}  , k , l I { i , j }   and k l and 
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R i j i R i R i R i j R j R j R j k R n R n R n

i , j R i R j R i R j R i R j

i , k R i R

ς (w ,w ) w ,T (w ), I (w ), F (w ) , w ,T (w ), I (w ), F (w ) , w ,T (0 ), I (0 ), F (0 ) ,

w ,max T (w ),T (w ) ,max I (w ), I (w ) ,min F (w ), F (w ) ,

w ,max T (w ),T (w




 

      

     
     
          
     

k R i R k R i R k

j , k R j R k R j R k R j R k

) ,max I (w ), I (w ) ,min F (w ), F (w ) ,

w ,max T (w ),T (w ) ,max I (w ), I (w ) ,min F (w ), F (w )

     
     
     
          
                  
      
           

      

 

where i , j , k I  and i j k  , respectively. 

Definition 2. [8]. Let W be a set of universe and w W . Let R be a NS over W and V be any proper 

non- empty subset of W. Then 
R
ς (V )  is said to be neutro-fine set (NFS) over W. 

Definition 3. [8]. Let NFS(W) be the family of all NFSs over W. Then the fine collection of 
R
ς (V )  is 

denoted as f

W
ς  and defined over the NT (W,

n
τ ) as f

W nf nf R
ς 0 , 1 , ς (V )

 
  

  
   

U .  

Thus the triplet f

n W
W ,τ , ς
 
 
 
  
 

 is said to be a NFTS over (W,
n

τ ). The elements belong to f

W
ς  are said to 

be neutro-fine open sets (NFOSs) over (W,
n

τ ) and the complement of NFOSs are said to be neutro-fine 

closed sets (NFCSs) over (W,
n

τ ) and denote the collection by F

W
ς . 

Definition 4. [8]. Let f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let 
R
ς (V ) be a NFS over W. Then the 

neutro-fine interior of 
R
ς (V )  is denoted as  nf R

Int ς (V)  and is defined as the union of all NFOSs 

contained in 
R
ς (V ) . 

Clearly,  nf R
Int ς (V)  is the largest NFOS contained in 

R
ς (V ) . 

Definition 5. [8]. Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let 
R
ς (V ) be a NFS over W. Then the 

neutro-fine closure of 
R
ς (V ) is denoted as  nf R

Cl ς (V )  and is defined as the intersection of all NFCSs 

containing 
R
ς (V ) . 

Clearly,  nf R
Cl ς (V )  is the smallest NFCS containing 

R
ς (V ) . 

Definition 6. [8]. Let NF(W) be the family of all NFs over the universe W and w W . Then NFS 

α , β , χ

w  is said to be a neutro-fine point (NFP), for 0 α,β,γ 1   and is defined as follows: 

 
 

  


α,β, γ (α,β, γ), if w v
w v (0,0, 1), if w v . 
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Every NFS is the union of its NFPs. 

Definition 7. [8]. Let f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let
R
ς (V )  be a NFS over W. Then 

R
ς (V )  is said to be a neutro-fine neighborhood of the NFP 

α , β , χ

R
w ς (V ) , if there exists a NFOS 

R
ς (U )  such that 

α, β ,χ

R R
w ς (U ) ς (V )  . 

Proposition 1. [8]. Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS. Let 
R 1

ς (V ) and 
R 2
ς (V )  be two NFSs over W. Then, 

 nf nf nf
Int 0 0  and  nf nf nf

Int 1 1 : 

R 1
ς (V ) is NFOS  nf R 1 R 1

Int ς (V ) ς (V )  ; 

 nf R 1 R 1
Int ς (V ) ς (V ) ; 

   R 1 R 2 nf R 1 nf R 2
ς (V ) ς (V ) Int ς (V ) Int ς (V )   ; 

    nf nf R 1 nf R 1
Int Int ς (V ) Int ς (V ) ; 

     nf R 1 R 2 nf R 1 nf R 2
Int ς (V ) ς (V ) Int ς (V ) Int ς (V )I I ; 

     nf R 1 R 2 nf R 1 nf R 2
Int ς (V ) ς (V ) Int ς (V ) Int ς (V )U U ; 

   nf R 1 nf R 1
Int ς (V ) Cl ς (V )

    
 

. 

Proof. Straightforward. 

Proposition 2. [8]. Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS. Let 
R 1

ς (V ) and 
R 2
ς (V )  be two NFSs over W. Then, 

 nf nf nf
Cl 0 0  and  nf nf nf

Cl 1 1 ; 

R 1
ς (V ) is NFCS  nf R 1 R 1

Cl ς (V ) ς (V )  ; 

 nf R 1 R 1
Cl ς (V ) ς (V ) ; 

   R 1 R 2 nf R 1 nf R 2
ς (V ) ς (V ) Cl ς (V ) Cl ς (V )   ; 

    nf nf R 1 nf R 1
Cl Cl ς (V ) Cl ς (V ) ; 
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     nf R 1 R 2 nf R 1 nf R 2
Cl ς (V ) ς (V ) Cl ς (V ) Cl ς (V )U U ; 

     nf R 1 R 2 nf R 1 nf R 2
Cl ς (V ) ς (V ) Cl ς (V ) Cl ς (V )I I ; 

   nf R 1 nf R 1
Cl ς (V ) Int ς (V )

    
 

. 

Proof. Straightforward. 

3| Some Form of Generalized Open Sets in NFTS 

In this portion, some open types of generalized open sets on NFTS are defined and probable results are 

carried by some major expressive examples. This portion is splitted into 3 sub-portions which states neutro-

fine-generalized, neutro-fine-semi, and neutro-fine-generalized semi-open sets on NFTS. 

3.1| Neutro-Fine-Generalized Open Sets 

Let 
R
ς (V ) be a NFS over W of a NFTS f

n W
W ,τ , ς
 
 
 
  
 

. Then 
R 1

ς (V )  is said to be a neutro-fine-generalized 

closed set (nf -GCS) if  nf R R
Cl ς (V) ς (U)  whenever 

R R
ς (V ) ς (U )  and 

R
ς (U ) is NFOS. The 

complement of nf -GCS is said to be neutro-fine-generalized open set (nf -GOS). 

Theorem 1. Every NFCS is a nf -GCS in NFTS f

n W
W ,τ , ς
 
 
 
  
 

. 

Proof. Let 
R
ς (V )  be a NFCS on f

n W
W ,τ , ς
 
 
 
  
 

. Let 
R R
ς (V ) ς (U ) , where 

R
ς (U )  is NFOS in 

f

n W
W ,τ , ς
 
 
 
  
 

. Since 
R
ς (V )  is a NFCS,  R nf R

ς (V ) Cl ς (V )    n f R R
Cl ς (V) ς (V)  . Thus 

 nf R R R
Cl ς (V ) ς (V ) ς (U )  . Hence 

R
ς (V )  is a nf -GCS in NFTS f

n W
W ,τ , ς
 
 
 
  
 

. 

Remark 1. The converse of the above theorem is not true as shown in the following example. 

Example 1. Let 
1 2 3

W w ,w ,w
 
  

  
   

 and 
n n n

τ 0 , 1 ,R, S ,T ,U
 
  

  
   

 where R, S, T and U are NSs over W 

and are defined as follows 

1 2 3
R w ,.2,.4,.7 , w ,.6 ,.3,.1 , w ,.4,.5 ,.6

 
  

  
 
  

, 

1 2 3
S w ,.9,.3,.6 , w ,.6 ,.5 ,.4 , w ,.7 ,.8 ,.1

 
  

  
 
  

, 
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1 2 3
T w ,.9,.4,.6 , w ,.6 ,.5 ,.1 , w ,.7 ,.8 ,.1

 
  

  
 
  

 and 

1 2 3
U w ,.2,.3,.7 , w ,.6 ,.3,.4 , w ,.4,.5 ,.6

 
  

  
 
  

. 

Thus (W,
n

τ ) is a NTS over W. 

Then NFOSs over (W,
n

τ ) are f
W n n R 1 R 3 S 2 3
ς 0 , 1 ,ς (w ),ς (w ),ς (w ,w )

 
  

  
   

, where 

R 1 1 2 3 1, 2 1,3 2 ,3
ς (w ) w ,.2,.4,.7 , w ,0 ,0 , 1 , w ,0 ,0 , 1 , w ,.6 ,.4,.1 , w ,.4,.5 ,.6 , w ,0 ,0 , 1

 
  

  
 
  

, 

R 3 1 2 3 1, 2 1,3 2 ,3
ς (w ) w ,0 ,0 , 1 , w ,0 ,0 , 1 , w ,.4,.5 ,.6 , w ,0 ,0 , 1 , w , .4,.5 ,.6 , w ,.6 ,.5 ,.1

 
  

  
 
  

, 

S 2 3 1 2 3 1, 2 1,3 2 ,3
ς (w ,w ) w ,0 ,0 , 1 , w ,.6,.5 ,.4 , w ,.7 ,.8 ,.1 , w ,.9 , .5 ,.4 , w ,.9,.8 ,.1 , w ,.7 ,.8 ,.1

 
  

  
 
  

 

and NFCSs  over  (W,
n

τ ) are F
W n n R 1 R 3 S 2 3
ς 0 , 1 ,ς (w ) ,ς (w ) ς (w ,w )

 
      
   

, where 

R 1 1 2 3 1, 2 1,3 2 ,3
ς (w ) w ,.7 ,.6 ,.2 , w ,1, 1,0 , w ,1, 1,0 , w ,.1,.6 ,.6 , w ,.6,.5 ,.4 , w ,1, 1,0

 
     
 
  

, 

R 3 1 2 3 1, 2 1,3 2 ,3
ς (w ) w ,1, 1,0 , w ,1, 1,0 , w ,.6,.5 ,.4 , w ,1, 1,0 , w , .6 ,.5 ,.4 , w ,.1,.5 ,.6

 
     
 
  

, 

S 2 3 1 2 3 1, 2 1,3 2 ,3
ς (w ,w ) w ,1, 1,0 , w ,.4,.5 ,.6 , w ,.1,.2 ,.7 , w ,.4 , .5 ,.9 , w ,.1,.2 ,.9 , w ,.1,.2 ,.7

 
     
 
  

. 

Thus 
f

n W
W ,τ , ς
 
 
 
  
 

 is a NFTS over (W,
n

τ ). Here nf -GCS
S 2 S 3 S 2 ,3
ς (w ),ς (w ),ς (w )

 
  

  
   

. Thus 

S 2
ς (w )  is nf -GCS but not NFCS. 

Theorem 2. If 
R 1

ς (V )  and 
R 2
ς (V )  are nf -GCSs over f

n W
W ,τ , ς
 
 
 
  
 

, then 
R 1 R 2
ς (V ) ς (V )U  is also a 

nf -GCS over f

n W
W ,τ , ς
 
 
 
  
 

.  

Proof. Let 
R 1

ς (V )  and 
R 2
ς (V )   be nf -GCSs over f

n W
W ,τ , ς
 
 
 
  
 

. Then  nf R 1 R
Cl ς (V ) ς (U )  

whenever 
R 1 R
ς (V ) ς (U )  and 

R
ς (U ) is NFOS and   nf R R

Cl ς (V) ς (U)  whenever 
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R R
ς (V ) ς (U )  and 

R
ς (U ) is NFOS. Since 

R 1
ς (V )  and 

R 2
ς (V )  are subsets of 

R
ς (U ) , 

R 1 R 2
ς (V ) ς (V )U  

are subsets of 
R
ς (U )  and 

R
ς (U ) is NFOS. Then by Proposition 2, 

     nf R 1 R 2 nf R 1 nf R 2
Cl ς (V ) ς (V ) Cl ς (V ) Cl ς (V )U U . Thus  nf R 1 R 2 R

Cl ς (V ) ς (V ) ς (U )U . Hence 

R 1 R 2
ς (V ) ς (V )U  is a nf -GCSs over 

f

n W
W ,τ , ς
 
 
 
  
 

. 

Remark 2. The intersection of two nf -GCSs need not be a tnf -GCS as shown in the following example. 

Example 2. Consider the Example 1. Here nf -GCS
S 2 S 3 S 2 ,3
ς (w ),ς (w ),ς (w )

 
  

  
   

. Then  

S 2 S 3 1 2 3 1, 2 1,3 2 ,3
ς (w ) ς (w ) w ,0 ,0 , 1 , w ,0 ,0 , 1 , w ,0 ,0 , 1 , w ,0 ,0 , 1 , w ,0,0 , 1 , w ,.7 ,.8 ,.1

 
  

  
 
  

I ,  

is not a nf -GCS. 

Theorem 3. If 
R 1

ς (V )  and 
R 2
ς (V )  are nf -GCSs over f

n W
W ,τ , ς
 
 
 
  
 

, then 

     nf R 1 R 2 nf R 1 nf R 2
Cl ς (V ) ς (V ) Cl ς (V ) Cl ς (V )I I .  

Proof. Let 
R 1

ς (V )  and 
R 2
ς (V )   be nf -GCSs over f

n W
W ,τ , ς
 
 
 
  
 

. Then  nf R 1 R
Cl ς (V ) ς (U )  whenever 

R 1 R
ς (V ) ς (U )  and 

R
ς (U ) is NFOS and  nf R R

Cl ς (V) ς (U)  whenever 
R R
ς (V ) ς (U )  and 

R
ς (U ) is 

NFOS. 

Since 
R 1

ς (V )  and 
R 2
ς (V )  are subsets of 

R
ς (U ) , 

R 1 R 2
ς (V ) ς (V )I  are subsets of 

R
ς (U )  and 

R
ς (U ) is 

NFOS. 

Since 
R 1 R 2 R 1
ς (V ) ς (V ) ς (V )I  and 

R 1 R 2 R 1
ς (V ) ς (V ) ς (V )I ,    nf R 1 R 2 nf R 1

Cl ς (V ) ς (V ) Cl ς (V )I

and    nf R 1 R 2 nf R 2
Cl ς (V ) ς (V ) Cl ς (V )I , by Proposition 2. Thus 

     nf R 1 R 2 nf R 1 ηf R 2
Cl ς (V ) ς (V ) Cl ς (V ) Cl ς (V )I I . 

3.2| Neutro-Fine-Semi Open Sets 

Definition 8. Let 
R
ς (V ) be a NFS over W of a NFTS 

f

n W
W ,τ , ς
 
 
 
  
 

. Then 
R
ς (V )  is said to be a neutro-

fine-semi closed set (nf -SCS) if    nf nf R R
Int Cl ς (V) ς (V) .  

The complement of nf -SCS is said to be neutro-fine-semi open set (nf -SOS), i.e.,

  R nf nf R
ς (V) Cl Int ς (V) . 
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Theorem 4. Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS and 
R
ς (V )  be a NFS over W. Then 

R
ς (V )  is nf -SCS if and 

only if 
R
ς (V )  is nf -SOS. 

Proof. Let 
R
ς (V )  be a nf -SCS. Then   nf nf R R

Int Cl ς (V) ς (V) . 

Taking complement on both sides, 

  R nf nf R
ς (V ) Int Cl ς (V )

   
  

  nf nf R
Cl Cl ς (V )


 . 

By using Proposition 1,   R nf nf R
ς (V ) Cl Int ς (V )  . Thus 

R
ς (V )  is a nf -SOS. Conversely, assume 

that 
R
ς (V )  is a nf -SOS. Then   R nf nf R

ς (V ) Cl Int ς (V )  . 

Taking complement on both sides, 

  R nf nf R
ς (V ) Cl Int ς (V )

  
  

   nf nf R
Int Int ς (V )


 , by Proposition 1. 

By Proposition 2,   R nf nf R
ς (V) Int Cl ς (V) . Thus 

R
ς (V )  is a nf -SCS. 

Theorem 5. If 
R 1

ς (V )  and 
R 2
ς (V )  are nf -SCSs over NFTS 

f

n W
W ,τ , ς
 
 
 
  
 

, then 
R 1 R 2
ς (V ) ς (V )I  is 

also a nf -SCS in 
f

n W
W ,τ , ς
 
 
 
  
 

.  

Proof. Let 
R 1

ς (V )  and 
R 2
ς (V )   be nf -SCSs over f

n W
W ,τ , ς
 
 
 
  
 

. Then   nf nf R 1 R 1
Int Cl ς (V ) ς (V )  

and   nf nf R 1 R 1
Int Cl ς (V ) ς (V ) . Thus      R 1 R 2 nf nf R 1 nf nf R 2

ς (V ) ς (V ) Int Cl ς (V ) Int Cl ς (V )I I  

    nf nf R 1 nf R 2
Int Cl ς (V ) Cl ς (V ) I   nf nf R 1 R 2

Int Cl ς (V ) ς (V ) I , by Propositions 1 and 2. 

Hence 
R 1 R 2
ς (V ) ς (V )I  is a nf -SCSs in 

f

n W
W ,τ , ς
 
 
 
  
 

.  

Theorem 6. If 
R 1

ς (V )  and 
R 2
ς (V )  are nf -SOSs over NFTS 

f

n W
W ,τ , ς
 
 
 
  
 

, then 
R 1 R 2
ς (V ) ς (V )U  is 

also a nf -SOS in 
f

n W
W ,τ , ς
 
 
 
  
 

.  
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Proof. Let 
R 1

ς (V )  and 
R 2
ς (V )   be nf -SCSs over f

n W
W ,τ , ς
 
 
 
  
 

. Then   R 1 nf nf R 1
ς (V ) Cl Int ς (V )  and 

  R 2 nf nf R 2
ς (V ) Cl Int ς (V ) . Thus      R 1 R 2 nf nf R 1 nf nf R 2

ς (V ) ς (V ) Cl Int ς (V ) Cl Int ς (V )U U  

    nf nf R 1 nf R 2
Cl Int ς (V ) Int ς (V ) U   nf nf R 1 R 2

Cl Int ς (V ) ς (V ) U , by Propositions 1 and 2. 

Theorem 7. Every NFCS is a nf -SCS in NFTS 
f

n W
W ,τ , ς
 
 
 
  
 

. 

Proof. Let 
R
ς (V )  be a NFCS on 

f

n W

1
W ,τ , ς

2

 
 
 
  
 

. Then  R nf R
ς (V ) Cl ς (V ) . Thus 

    ηf nf R ηf R
Int Cl ς (V ) Cl ς (V )   ηf nf R R

Int Cl ς (V ) ς (V )  . Hence 
R
ς (V )  is a nf -SCS in 

f

n W
W ,τ , ς
 
 
 
  
 

. 

Definition 9. Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let 
R
ς (V ) be a NFS over W. Then the neutro-

fine-semi interior of 
R
ς (V )  is denoted as  nf R

S Int ς (V )  and is defined as the union of all  nf -SOSs 

contained in 
R
ς (V ) . Clearly,  nf R

S Int ς (V )  is the largest nf -SOS contained in 
R
ς (V ) . 

Definition 10. Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let 
R
ς (V ) be a NFS over W. Then the neutro-

fine-semi closure of 
R
ς (V ) is denoted as  nf R

S Cl ς (V)  and is defined as the intersection of all nf -SCSs 

containing
R
ς (V ) . Clearly,  nf R

S Cl ς (V)  is the smallest nf -SCS containing 
R
ς (V ) . 

Proposition 3. Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS. Let 
R 1

ς (V ) and 
R 2
ς (V )  be two NFSs over W. Then, 

 nf R 1 R 1
S Int ς (V ) ς (V )  ; 

R 1
ς (V ) is nf -SOS  nf R 1 R 1

S Int ς (V ) ς (V )  ; 

    nf nf R 1 nf R 1
S Int S Int ς (V ) S Int ς (V )   ; 

   R 1 R 2 nf R 1 nf R 2
ς (V ) ς (V ) S Int ς (V ) S Int ς (V )    . 

Proof. Straightforward.  

Proposition 4. Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS. Let 
R 1

ς (V ) and 
R 2
ς (V )  be two NFSs over W. Then, 
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 R 1 nf R 1
ς (V ) S Cl ς (V ) ; 

R 1
ς (V ) is nf -SCS  nf R 1 R 1

S Cl ς (V ) ς (V )  ; 

    nf nf R 1 nf R 1
S Cl S Cl ς (V ) S Cl ς (V )   ; 

   R 1 R 2 nf R 1 nf R 2
ς (V ) ς (V ) S Cl ς (V ) S Cl ς (V )    . 

Proof. Straightforward. 

Proposition 5. Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS. Let 
R
ς (V ) be any NFS over W. Then, 

   nf R nf R R
Int ς (V) S Int ς (V ) ς (V)  ; 

   R nf R nf R
ς (V ) S Cl ς (V ) Cl ς (V )  ; 

   nf R nf R
S Cl ς (V ) S Int ς (V ) 

    
 

; 

   nf R nf R
S Int ς (V ) S Cl ς (V ) 

    
 

. 

Proof. Straightforward. 

Proposition 6. Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS. Let 
R 1

ς (V ) and 
R 2
ς (V )  be two NFSs over W. Then, 

     nf R 1 R 2 nf R 1 nf R 2
S Int ς (V ) ς (V ) S Int ς (V ) S Int ς (V )  I I ; 

     nf R 1 R 2 nf R 1 nf R 2
S Int ς (V ) ς (V ) S Int ς (V ) S Int ς (V )  U U . 

Proof. Let 
R 1

ς (V ) and 
R 2
ς (V )  be two NFSs over W. 

Since
R 1 R 2 R 1
ς (V ) ς (V ) ς (V )I  and 

R 1 R 2 R 2
ς (V ) ς (V ) ς (V )I , by using Proposition 3, 

   nf R 1 R 2 nf R 1
S Int ς (V ) ς (V ) S Int ς (V ) I  and    nf R 1 R 2 nf R 2

S Int ς (V ) ς (V ) S Int ς (V ) I . 

This implies that, 

By using Proposition 3, 

 nf R 1 R 1
S Int ς (V ) ς (V )   and  nf R 2 R 2

S Int ς (V ) ς (V ) 

   nf R 1 nf R 2 R 1 R 2
S Int ς (V ) S Int ς (V ) ς (V ) ς (V )  I I . 

       
nf R 1 R 2 nf R 1 nf R 2

S Int ς (V ) ς (V ) S Int ς (V ) S Int ς (V )I I , (1) 
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By using Proposition 3, 

     nf nf R 1 nf R 2 nf R 1 R 2
S Int S Int ς (V ) S Int ς (V ) S Int ς (V ) ς (V )    

 
 

I I . 

By Eq. (1),  

       nf nf R 1 nf nf R 2 nf R 1 R 2
S Int S Int ς (V ) S Int S Int ς (V ) S Int ς (V ) ς (V )    I I . 

By using Proposition 3, 

Hence from Eqs. (1)-(2), 

     nf R 1 R 2 nf R 1 nf R 2
S Int ς (V ) ς (V ) S Int ς (V ) S Int ς (V )  I I . 

Since 
R 1 R 1 R 2
ς (V ) ς (V ) ς (V ) U  and 

R 1 R 1 R 2
ς (V ) ς (V ) ς (V ) U , by using Proposition 3, 

   nf R 1 nf R 1 R 2
S Int ς (V ) S Int ς (V ) ς (V )  U  and    nf R 2 nf R 1 R 2

S Int ς (V ) S Int ς (V ) ς (V )  U . Hence

     nf R 1 R 2 nf R 1 nf R 2
S Int ς (V ) ς (V ) S Int ς (V ) S Int ς (V )  U U . 

Proposition 7. Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS. Let 
R 1

ς (V ) and 
R 2
ς (V )  be two NFSs over W. Then, 

     nf R 1 R 2 nf R 1 nf R 2
S Cl ς (V ) ς (V ) S Cl ς (V ) S Cl ς (V )  U U ; 

     nf R 1 R 2 nf R 1 nf R 2
S Cl ς (V ) ς (V ) S Cl ς (V ) S Cl ς (V )  I I . 

Proof. Let 
R 1

ς (V ) and 
R 2
ς (V )  be two NFSs over W. 

(i) Since    nf R 1 R 2 nf R 1 R 2
S Cl ς (V ) ς (V ) S Cl ς (V ) ς (V ) 

     
 

U U , by using Proposition 5, 

   nf R 1 R 2 nf R 1 R 2
S Cl ς (V ) ς (V ) S Int ς (V ) ς (V ) 

        
   

U U     nf R 1 R 2
S Int ς (V ) ς (V )

   
  

I . 

Again by using Proposition 5,      nf R 1 R 2 nf R 1 nf R 2
S Cl ς (V ) ς (V ) S Int ς (V ) S Int ς (V )  

   
  

U I   

       nf R 1 nf R 2
S Int ς (V ) S Int ς (V ) 

 
  U . 

By using Proposition 5,        nf R 1 R 2 nf R 1 nf R 2
S Cl ς (V ) ς (V ) S Cl ς (V ) S Cl ς (V )  

 
 U U   

   nf R 1 nf R 2
S Cl ς (V ) S Cl ς (V )  U . 

       
nf R 1 nf R 2 nf R 1 R 2

S Int ς (V ) S Int ς (V ) S Int ς (V ) ς (V )I I , (2) 
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Hence      nf R 1 R 2 nf R 1 nf R 2
S Cl ς (V ) ς (V ) S Cl ς (V ) S Cl ς (V )  U U . 

(ii) Since
R 1 R 2 R 1
ς (V ) ς (V ) ς (V )I  and 

R 1 R 2 R 2
ς (V ) ς (V ) ς (V )I , by using Proposition 4, 

   nf R 1 R 2 nf R 1
S Cl ς (V ) ς (V ) S Cl ς (V ) I  and    nf R 1 R 2 nf R 2

S Cl ς (V ) ς (V ) S Cl ς (V ) I . 

Hence      nf R 1 R 2 nf R 1 nf R 2
S Cl ς (V ) ς (V ) S Cl ς (V ) S Cl ς (V )  I I . 

3.3| Neutro-Fine-Generalized Semi Open Sets 

Definition 11. Let 
R
ς (V ) be a NFS over W of a NFTS f

n W
W ,τ , ς
 
 
 
  
 

. Then 
R
ς (V )  is said to be a 

neutro-fine-generalized semi closed set (nf -GSCS) if   nf R R
S Cl ς (V ) ς (U )   whenever 

R R
ς (V ) ς (U )  and 

R
ς (U )  is NFOS. 

The complement of nf -GSCS is said to be neutro-fine-generalized semi open set (nf -GSOS), i.e., 

 R nf R
ς (U ) S Int ς (V )  whenever 

R R
ς (U ) ς (V )  and 

R
ς (U )  is NFCS. 

Example 3. Consider Example 1. Thus nf -SCS
R 1 3 S 1
ς (w ,w ),ς (w )

 
  

  
   

, nf -SOS

R 1 3 S 1
ς (w ,w ) ,ς (w )

 
     
   

 where 

R 1 3 1 2 3 1, 2 1,3 2 ,3
ς (w ,w ) w ,.7 ,.6 ,.2 , w ,1, 1,0 , w ,.6,.5 ,.4 , w ,.1, .6 ,.6 , w ,.6,.5 ,.4 , w ,.1,.5 ,.6

 
     
 
  

, 

S 1 1 2 3 1, 2 1,3 2 ,3
ς (w ) w ,.6,.7 ,.9 , w ,.1, 1,0 , w ,1, 1,0 , w ,.4,.5 , .9 , w ,.1,.2 ,.9 , w ,1, 1,0

 
     
 
  

and 

nf -GSCS  S 2
ς (w ) . 

Theorem 8. Every NFCS is a nf -GSCS in NFTS 
f

n W
W ,τ , ς
 
 
 
  
 

. 

Proof. Let 
R
ς (V )  be a NFCS in NFTS 

f

n W
W ,τ , ς
 
 
 
  
 

. 

Let 
R R
ς (V ) ς (U ) , where 

R
ς (U )  is NFOS in f

n W
W ,τ , ς
 
 
 
  
 

. Since 
R
ς (V )  is a NFCS, 

 R nf R
ς (V ) Cl ς (V ) , by Proposition 2. Also, by Proposition 5,    nf R nf R

S Cl ς (V) Cl ς (V)  . Thus 

   nf R nf R R R
S Cl ς (V) Cl ς (V) ς (V) ς (U)    . Hence 

R
ς (V )  is a nf -GSCS in NFTS 

f

n W
W ,τ , ς
 
 
 
  
 

. 
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Theorem 9. If 
R 1

ς (V )  and 
R 2
ς (V )  are nf -GSCSs over NFTS 

f

n W
W ,τ , ς
 
 
 
  
 

, then 
R 1 R 2
ς (V ) ς (V )I  is 

also a nf -GSCS in 
f

n W
W ,τ , ς
 
 
 
  
 

. 

Proof. Let 
R 1

ς (V )  and 
R 2
ς (V )  be nf -GSCSs over f

n W
W ,τ , ς
 
 
 
  
 

. 

If 
R 1 R 2 R
ς (V ) ς (V ) ς (U )I  and 

R
ς (U )  is a NFOS, then 

R 1 R
ς (V ) ς (U )  and 

R 1 R
ς (V ) ς (U ) . 

Since 
R 1

ς (V )  and 
R 2
ς (V )  are nf –GSCSs,   nf R 1 R

S Cl ς (V ) ς (U)   and  nf R 2 R
S Cl ς (V ) ς (U)  . 

Thus    nf R 1 nf R 2 R
S Cl ς (V ) S Cl ς (V ) ς (U)  I . 

By Proposition 7,      nf R 1 R 2 nf R 1 nf R 2 R
S Cl ς (V ) ς (V ) S Cl ς (V ) S Cl ς (V ) ς (U)   I I . This implies that, 

 nf R 1 R 2 R
S Cl ς (V ) ς (V ) ς (U) I . Thus  nf R 1 R 2 R

S Cl ς (V ) ς (V ) ς (U) I , 
R 1 R 2 R
ς (V ) ς (V ) ς (U )I  

and 
R
ς (U )  is a NFOS. 

Hence 
R 1 R 2
ς (V ) ς (V )I  is a nf -GSCS over 

f

n W
W ,τ , ς
 
 
 
  
 

. 

Theorem 10. Every NFOS is a nf -GSOS in NFTS 
f

n W
W ,τ , ς
 
 
 
  
 

. 

Proof. Let 
R
ς (V )  be a NFOS in NFTS 

f

n W
W ,τ , ς
 
 
 
  
 

. Let 
R R
ς (U ) ς (V ) , where 

R
ς (U )  is NFCS in 

f

n W
W ,τ , ς
 
 
 
  
 

. 

Since 
R
ς (V )  is a NFOS,  R nf R

ς (V ) Int ς (V ) , by Proposition 1.  

Also, by Proposition 5,    nf R nf R R
Int ς (V) S Int ς (V) ς (V)  . Thus  R nf R

ς (V) S Int ς (V)   

 R R nf R
ς (U) ς (V) S Int ς (V)   . 

Hence 
R
ς (V )  is a nf -GSCS in NFTS 

f

n W
W ,τ , ς
 
 
 
  
 

. 

Theorem 11. If 
R 1

ς (V )  and 
R 2
ς (V )  are nf -GSOSs over NFTS 

f

n W
W ,τ , ς
 
 
 
  
 

, then 
R 1 R 2
ς (V ) ς (V )U  is 

also a nf -GSOS in 
f

n W
W ,τ , ς
 
 
 
  
 

. 
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Proof. Let 
R 1

ς (V )  and 
R 2
ς (V )  be nf -GSOSs over f

n W
W ,τ , ς
 
 
 
  
 

. 

If 
R R 1 R 2
ς (U ) ς (V ) ς (V ) U  and 

R
ς (U )  is a NFCS, then 

R R 1
ς (U ) ς (V )  and 

R R 2
ς (U ) ς (V ) . 

Since 
R 1

ς (V )  and 
R 2
ς (V )  are nf –GSOSs,   R nf R 1

ς (U ) S Int ς (V )  and  R nf R 2
ς (U) S Int ς (V ) . 

Thus    R nf R 1 nf R 1
ς (U) S Int ς (V ) S Int ς (V )  U . 

By Proposition 6,      R nf R 1 nf R 1 nf R 1 R 2
ς (U) S Int ς (V ) S Int ς (V ) S Int ς (V ) ς (V )   U U . 

This implies that,  R nf R 1 R 2
ς (U) S Int ς (V ) ς (V ) U . 

Thus   R nf R 1 R 2
ς (U) S Int ς (V ) ς (V ) U ,  R nf R 1 R 2

ς (U) S Int ς (V ) ς (V ) U  and 
R
ς (U )  is a NFCS. 

Hence 
R 1 R 2
ς (V ) ς (V )U  is a nf -GSOS in 

f

n W
W ,τ , ς
 
 
 
  
 

. 

4| Neutro-Fine Minimal and Maximal Open Sets  

In this portion, the minimal and maximal open sets on NFTS are defined and probable results are carried 

by some major expressive examples.  

Definition 12.  Let 
R
ς (V )  be a proper non-empty NFOS of a NFTS f

n W
W ,τ , ς
 
 
 
  
 

. Then 
R
ς (V ) is 

said to be a neutro-fine minimal open set (
nf

min -OS) if any NFOS which is contained in 
R
ς (V )  is 

nf
0  

or 
R

ς (V ).  The complement of 
nf

min -OS is said to be neutro-fine minimal closed set (
nf

min -CS).  

Definition 13.  Let 
R
ς (V )  be a proper non-empty NFOS of a NFTS f

n W
W ,τ , ς
 
 
 
  
 

. Then 
R
ς (V )  is 

said to be a neutro-fine maximal open set (
nf

max -OS) if any NFOS which is contained in 
R
ς (V )  is 

nf
1  

or 
R
ς (V ) . The complement of 

nf
max -OS is said to be neutro-fine maximal closed set (

nf
max -CS). 

Example 4.  Let 
1 2 3

W w ,w ,w
 
  

  
   

 and 
n n n

τ 0 , 1 ,R, S
 
  

  
   

 where R and S are NSs over W and are 

defined as follows  

1 2 3
R w ,.1,.2 ,.8 , w ,.4,.7 ,.3 , w ,.6 ,.5 ,.2

 
  

  
 
  

 and 

1 2 3
S w ,.6,.5 ,.3 , w ,.9 ,.8 ,.1 , w ,.7 ,.6 ,.1

 
  

  
 
  

. 
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Thus (W,
n

τ ) is a NTS over W. Then f
W n n R 1 R 2 3 S 2
ς 0 , 1 ,ς (w ),ς (w ,w ),ς (w )

 
  

  
   

, where 

R 1 1 2 3 1, 2 1,3 2 ,3
ς (w ) w ,.1,.2 ,.8 , w ,0 ,0 , 1 , w ,0 ,0 , 1 , w ,.4,.7 ,.3 , w ,.6,.5 ,.2 , w ,0 ,0 , 1

 
  

  
 
  

, 

R 2 3 1 2 3 1, 2 1,3 2 ,3
ς (w ,w ) w ,0 ,0 , 1 , w ,.4,.7 ,.3 , w ,.6 ,.5 ,.2 , w ,.4 , .7 ,.3 , w ,.6 ,.5 ,.2 , w ,.6 ,.7 ,.2

 
  

  
 
  

, 

S 2 1 2 3 1, 2 1,3 2 ,3
ς (w ) w ,0 ,0 , 1 , w ,.9 ,.8 ,.1 , w ,0 ,0 , 1 , w ,.9 ,.8 ,.1 , w ,0 ,0 , 1 , w ,.9 ,.8 ,.1

 
  

  
 
  

 are 

NFOSs over (W,
n

τ ). 

Hence 
f

n W
W ,τ , ς
 
 
 
  
 

 is a NFTS over (W,
n

τ ). Thus -OS
n R 1 S 2

0 ,ς (w ),ς (w )
 
  

  
   

, 
nf

min -CS

n R 1 S 2
1 ,ς (w ) ,ς (w )

 
     
   

, nfmax
-OS

n R 2 3
0 ,ς (w ,w )

 
  

  
   

 and -CS
n R 2 3
1 ,ς (w ,w )

 
    
   

. 

Example 5. Consider Example 1. Here 
nf

min -OS
n R 1 R 3

0 ,ς (w ),ς (w )
 
  

  
   

, 
nf

min -CS

n R 1 R 3
1 ,ς (w ) ,ς (w )

 
     
   

, 

nfmax
-OS

n S 2 3
0 ,ς (w ,w )

 
  

  
   

 and 
nf

max -CS
n S 2 3
1 ,ς (w ,w )

 
    
   

. 

Lemma 1.  Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). 

If 
R
ς (U )  is a 

nf
min -OS and 

R
ς (W )  is NFOS, then 

R R nf
ς (U ) ς (W) 0I  or 

R R
ς (U ) ς (W ) . 

If 
R
ς (U )  and 

R
ς (V )  are 

nf
min -OSs, then 

R R nf
ς (U ) ς (V ) 0I  or 

R R
ς (U ) ς (V ) . 

Proof. Let 
R
ς (W )  be a NFOS such that 

R R nf
ς (U ) ς (W) 0I . 

Since 
R
ς (U )  is a 

nf
min -OS and 

R R R
ς (U ) ς (W ) ς (U )I , then 

R R R
ς (U ) ς (W ) ς (U )I . Hence 

R R
ς (U ) ς (W ) . 

If R R nf
ς (U ) ς (W) 0I , then 

R R
ς (U ) ς (V )  and 

R R
ς (V ) ς (U ) , by (i). Hence 

R R
ς (U ) ς (V ) . 
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Proposition 7.  Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let 
R
ς (U )  be a 

nf
min -OS. If 

α , β , γ

w is a 

NFP of 
R
ς (U ) , then 

R R
ς (U ) ς (W )  for any neutro-fine neighborhood 

R
ς (W )  of 

α , β , γ

w . 

Proof. Let f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). 

Let 
R
ς (W )  be a neutro-fine neighborhood of 

α , β , γ

w  such that 
R R
ς (U ) ς (W ) . Then 

R R
ς (U ) ς (W)I  is a NFOS such that 

R R R
ς (U ) ς (W ) ς (U )I  and 

R R nf
ς (U ) ς (W) 0I . 

This contradicts our assumption that 
R
ς (U )  is a 

nf
min -OS. Hence proved. 

Proposition 8.  Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let 
R
ς (U )  be a 

nf
min -OS. Then  

R R R
ς (U ) ς (W ) : ς (W )




 


I  is a neutro-fine neighborhood of 
α , β , γ

w







, for any NFP 
α , β , γ

w  of 

R
ς (U ) . 

Proof. Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let 
R
ς (U )  be a 

nf
min -OS. 

Since 
R
ς (U )  is a neutro-fine neighborhood of 

α , β , γ

w , by Proposition 7, then  

R R R
ς (U ) ς (W ) : ς (W )




 


I  is a neutro-fine neighborhood of 
α , β , γ

R
w ς (U )








. Thus 

R R R
ς (U ) ς (W ) : ς (W )




 


I  is a neutro-fine neighborhood of 
α , β , γ

w







. 

Proposition 9.  Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let 
R
ς (U )  be a non-empty NFOS. Then 

the following conditions are equivalent: 

R
ς (U )  is a 

nf
min -OS. 

 R nf R
ς (U) Cl ς (V)  for any NFS 

R
ς (V )  of 

R
ς (U ) . 

   nf R nf R
Cl ς (U ) Cl ς (V )  for any NFS 

R
ς (V )  of 

R
ς (U ) . 

Proof. (1) (2). Let 
R
ς (V )  be any NFS of 

R
ς (U ) . 
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By Proposition 7, for any NFP 
α , β , γ

w  of 
R
ς (U )  and any neutro-fine neighborhood 

R
ς (W )  of  

α , β , γ

w , 

then    R R R R R
ς (V ) ς (U ) ς (V ) ς (W) ς (V ) I I . Thus 

R R nf
ς (W ) ς (V ) 0I , and hence 

R R nf
ς (U ) ς (W) 0I  is a NFP of  nf R

Cl ς (V ) . Therefore  R nf R
ς (U) Cl ς (V) . 

(2) (3). Since
R
ς (V )  is any NFS of 

R
ς (U ) , then  R nf R

ς (U) Cl ς (V) . 

Thus by (2),       nf R nf nf R nf R
Cl ς (U) Cl Cl ς (V) Cl ς (V)  . Hence    nf R nf R

Cl ς (U ) Cl ς (V )  for any 

NFS 
R
ς (V )  of 

R
ς (U ) . 

(3) (1). Suppose that 
R
ς (U )  is not a 

nf
min -OS. 

Then there exists a NFS 
R
ς (V )  such that 

R R
ς (V ) ς (U ) . Then there exists a NFP 

α , β , γ

R
w ς (U )  such 

that 
α , β , γ

R
w ς (V ) . This implies that, 

α , β , γ

w  is a NFS. Then it is clear that 
α , β , γ

nf R
Cl w ς (V )

 
 

   
  
 

  

 
α , β , γ

nf nf R
Cl w Cl ς (U )

 
 
   
  
 

. 

Hence the proof. 

Lemma 2.  Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). 

If 
R
ς (U )  is a 

nf
max -OS and 

R
ς (W )  is NFOS, then 

R R nf
ς (U ) ς (W ) 1U  or 

R R
ς (W ) ς (U ) . 

If 
R
ς (U )  and 

R
ς (V )  are 

nf
max -OSs, then 

R R nf
ς (U ) ς (V ) 1U  or 

R R
ς (U ) ς (V ) . 

Proof. (i) Let 
R
ς (W )  be a NFOS such that 

R R nf
ς (U ) ς (W ) 1U . 

Since 
R
ς (U )  is a 

nf
max -OS and 

R R R
ς (U ) ς (U ) ς (W ) U , then 

R R R
ς (U ) ς (W ) ς (U )U . Hence 

R R
ς (W ) ς (U ) . 

If R R nf
ς (U ) ς (W ) 1U , then 

R R
ς (U ) ς (V )  and 

R R
ς (V ) ς (U ) , by (i). Hence 

R R
ς (U ) ς (V ) . 

Proposition 10.  Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let 
R
ς (U )  be a nf

max -OS. If 
α , β , γ

w is a 

NFP of 
R
ς (U ) , then for any neutro-fine neighborhood 

R
ς (W )  of 

α , β , γ

w , 
R R nf
ς (U ) ς (W ) 1U  or 

R R
ς (W ) ς (U ) . 

Proof. Follows from the Lemma 2. 



 

 

176 

C
h

in
n

a
d

u
ra

i 
a
n

d
 S

in
d

h
u

 |
J.

 F
u

z
z
y
. 

E
x

t.
 A

p
p

l.
 1

(3
) 

(2
0
2
0
) 

15
9
-1

7
9

 

 

Proposition 11.  Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let 
R
ς (U )  be a 

nf
max -OS. Then 

R R R
ς (U ) ς (W ) : ς (W )




 


U is a neutro-fine neighborhood of 
α , β , γ

w such that R R nf
ς (U ) ς (W) 1 .U  

Proof. Let 
f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let 
R
ς (U )  be a 

nf
max -OS. 

Since 
R
ς (U )  is a neutro-fine neighborhood of 

α , β , γ

w , by Proposition 10, then 

R R R
ς (U ) ς (W ) : ς (W )




 


U is a neutro-fine neighborhood of 
α , β , γ

w such that R R nf
ς (U ) ς (W) 1U   

R
ς (U ) . Hence the result. 

Theorem 12.  Let f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let 
R 1
ς (U ) , 

R 2
ς (U )  and 

R 3
ς (U )  be   

nf
max

-OSs such that 
R 1 R 2
ς (U ) ς (U ) . If  R 1 R 2 R 3

ς (U ) ς (U ) ς (U )I , then 
R 1 R 3
ς (U ) ς (U )  or 

R 2 R 3
ς (U ) ς (U ).  

Proof. Let 
R 1
ς (U ) , 

R 2
ς (U )  and 

R 3
ς (U )  be 

nf
max -OSs such that 

R 1 R 2
ς (U ) ς (U ) . Then 

   R 1 R 3 R 1 R 3 nf
ς (U ) ς (U ) ς (U ) ς (U ) 1I I I  

  R 1 R 3 R 1 R 2
ς (U ) ς (U ) ς (U ) ς (U ) I I U (by Lemma 2) 

    R 1 R 3 R 1 R 3 R 2
ς (U ) ς (U ) ς (U ) ς (U ) ς (U ) I I U I  

   R 1 R 3 R 3 R 1 R 2
ς (U ) ς (U ) ς (U ) ς (U ) ς (U ) I U I I  

   R 1 R 3 R 1 R 2
ς (U ) ς (U ) ς (U ) ς (U ) I U I  (since  R 1 R 2 R 3

ς (U ) ς (U ) ς (U )I ) 

 R 1 R 3 R 2
ς (U ) ς (U ) ς (U ) I U . 

If 
R 3 R 2
ς (U ) ς (U ) , then  R 3 R 2 nf

ς (U ) ς (U ) 1U . 

Thus  R 1 R 3 R 1
ς (U ) ς (U ) ς (U )I  implies 

R 1 R 3
ς (U ) ς (U ) . Since 

R 1
ς (U )  and 

R 3
ς (U )  are 

nf
max -

OSs, then hence 
R 1 R 3
ς (U ) ς (U ) . 

Theorem 13.  Let f

n W
W ,τ , ς
 
 
 
  
 

 be a NFTS over (W,
n

τ ). Let 
R 1
ς (U ) , 

R 2
ς (U )  and 

R 3
ς (U )  be , 

nf
max -OSs, which are different from each other. Then    R 1 R 2 R 1 R 3

ς (U ) ς (U ) ς (U ) ς (U )I I . 
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Proof. Let 
R 1
ς (U ) , 

R 2
ς (U )  and 

R 3
ς (U )  be , 

nf
max -OSs.  

Suppose assume that    R 1 R 2 R 1 R 3
ς (U ) ς (U ) ς (U ) ς (U )I I . Then  

       R 1 R 2 R 2 R 3 R 1 R 3 R 2 R 3
ς (U ) ς (U ) ς (U ) ς (U ) ς (U ) ς (U ) ς (U ) ς (U )I U I I U I . 

Thus    R 2 R 1 R 3 R 1 R 2 R 3
ς (U ) ς (U ) ς (U ) ς (U ) ς (U ) ς (U )I U U I . 

Since 
R 1 R 3 nf R 1 R 2
ς (U ) ς (U ) 1 ς (U ) ς (U ) U U , then 

R 2 R 3
ς (U ) ς (U ) . 

This implies that
R 2 R 3
ς (U ) ς (U ) , which contradicts our assumption. Hence proved. 

5| Conclusion 

The main objective of this paper is to define some collection of open sets such as neutro-fine-generalized 

open and neutro-fine-semi open sets on NFTS and analyzed its basic properties with perfect examples. 

The notion of interior and closure on semi-open sets are described and specified certain properties. These 

definitions provide the idea of generalized semi-open sets on NFTS. Also, the neutro-fine-minimal and 

neutro-fine-maximal open sets are defined and some of their properties are studied in this space. Likewise, 

discussed the complement of all these sets as its closed sets. The basic properties of the union and 

intersection of these sets are stated in some theorems. Only a few sets satisfy this postulates, and others 

are disproved as shown in the counterexamples. The converse of some theorems is proved in probable 

examples. Consequently, the future researchers can extend this NFTS to some special types of sets, whereas 

soft sets, rough sets, crisp sets, cubic sets, etc., Also, the application part can widen on MCDM problems. 
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Abstract 

1 | Introduction  

Nowadays, economic and financial issues of choosing the best investment portfolio for all individuals 

and legal entities are of special importance and have wide aspects. 

Investing means turning financial resources into one or more financial assets to achieve acceptable 

returns over a period of time and ultimately create wealth for the investor. Investing in monetary and 

capital markets is one of the most significant pillars of wealth creation and transfer in an economy 

[1]. 
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Because of the prosperity of the stock market as well as the desire to invest and the influx of people's 

capital into this market, choosing the best investment portfolio by achieving the highest return along with 

the lowest risk, which means choosing the best stock portfolio, are some of the main concerns of the 

society. Since several factors are involved in choosing the best portfolio, including the financial structure 

of companies, products, sales and profitability, asset volume, political, commercial, psychological risks, etc., 

the selection of the right portfolio can be complicated. As a result, using traditional methods in today’s 

complex situation will not much work. The use of mathematical models, due to their flexibility and the 

involvement of various quantitative and qualitative factors in the process of figuring out the best portfolio, 

by integrating facts such as ambiguities and doubts helps to make the answers obtained from the models 

closer to the facts and makes the range of multiple choices predictable. Among the various mathematical 

models, data envelopment analysis as a widely used technique can be effective in achieving the best 

portfolio. Especially when the ambiguities are applied in the model, the results of fuzzy data envelopment 

analysis in portfolio optimization will be much more accurate and consistent with the facts. 

In the current work, first, the basic definitions of the concepts are concisely presented and then an overview 

of some research done in the field of portfolio optimization using fuzzy data envelopment analysis has 

been made. 

2| Definitions 

Portfolio. It is the combination of assets or plans the investor or management acquires to achieve the 

desired return in a given period of time, by accepting the corresponding risks, and by converting some 

other financial assets. This concept, especially in stock market investing, means choosing and buying a 

portfolio of various stocks or diverse securities aiming to increase wealth. 

Data Envelopment Analysis. It is a non-parametric method in the field of operations research whose 

task is to evaluate the performance or efficiency of units/portfolios. This method, by considering various 

inputs and outputs, evaluates performances of multiple units/portfolios and identifies efficient and 

inefficient units/portfolios. This model was first proposed by Farrell in 1957 [10] and since then, the model 

has made extensive advances in various sciences and a lot of research has been done in evaluating the 

performance of different units as well as ranking them [2] and [4]. 

Fuzzy. It means vague and indefinite in word. It is first introduced by Zadeh in 1965 leading to 

fundamental changes in the theory of classical mathematics [5]. This concept is based on logic and human 

decisions so that this logic can be considered as an extension of Aristotelian logic. Unlike the classical logic, 

which is in the state of right and wrong (zeros and ones), fuzzy logic is flexible, and the correctness or 

incorrectness of any logical statement is determined by the degree of membership (numerical between zero 

and one) [5]. 

In other words, instead of the characteristic function, the membership function is employed as follows: 

fA: U → [0,1]. 

In which  𝑓𝐴(𝑢) ∈ [0,1]  refers to the level or degree of belonging of u to A. 

Intuitionistic Fuzzy. Although fuzzy sets can plot and investigate the ambiguity, they cannot discuss and 

plot all the ambiguities that occur in real life. To this end, in the cases with insufficient information, a 

developed fuzzy theory called intuitive fuzzy theory is used. 

An intuitive fuzzy subset of or an intuitive fuzzy subset in 𝑈 is a set such as 𝐴 in which to each member 

in 𝑢𝜖𝑈, two degrees are assigned including membership degree and non-membership degree. In other 

words, for each set of 𝐴, the membership function is defined as 𝑓𝐴: 𝑈 → [0,1] ∗   [0,1], so that 
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FA(u) = (μA(u), νA(u)),   0 ≤ μA(u)  ≤ 1. 

In the intuitive fuzzy sets, 𝜋𝐴 = 1 − 𝜇𝐴(𝑢) − 𝜈𝐴(𝑢) refers to the degree of doubt or ambiguity for each 

member 𝑢𝜖𝑈. 

In all of the above-mentioned definitions, 𝜇𝐴(𝑢) and 𝜈𝐴(𝑢) are both fuzzy sets. On the other hand, the 

values of membership in intuitive fuzzy sets can be considered as 𝐿 = {(𝑥, 𝑦)𝜖[0,1]2: 0 ≤ 𝑥 + 𝑦 ≤ 1}. 

Therefore, intuitive fuzzy sets are also called two-dimensional fuzzy sets [6] and [7]. 

3| Markowitz Model 

Markowitz was the first person who introduced a model capable of introducing a suitable criterion for 

portfolio selection by considering both risks and returns together. The Markowitz mean-variance model 

is the most popular selection approach for the stock portfolio. This model is based on the following 

statements: 

 Investors are basically risk-averse and have the expected increased utility. 

 Each investment option can be infinitely divisible. 

 Investors select their portfolio based on the average and variance of expected returns. 

 Investors have a one-period time horizon and this is the same for all investors. 

 Investors prefer a higher return on a certain level of risk and, conversely, lower risk on a certain level of return. 

A commodity investment portfolio is a portfolio that has the highest return at a certain level of risk or 

has the lowest risk at a certain level of return [8]. 

4| Data Envelopment Analysis 

Data envelopment analysis is a non-parametric method that is used to calculate the efficiency of 

homogeneous units, based on the inputs and outputs of the units, and finally the division of all units 

into efficient and inefficient units. This model was initially proposed by Farrell in 1957 [10] and then 

developed by Charnes et al. in 1978 [9] through which optimal solutions are sought by dividing a linear 

combination of outputs by a linear combination of inputs [9] and [10]. 

The CCR model of data envelopment analysis is expressed as follows: 

fk = Max
u,v

∑ (xo)nkvnk
N
n=1

∑ (xi)mkumk
M
m=1

 , 

s. t.                                                 

∑ (xo)nkvnk
N
n=1

∑ (xi)mkumk
M
m=1

≤ 1    j = 1,… , J , 

vnk, umk  ≥ 0   n = 1,… ,N,m = 1,… ,M. 

Since data envelopment analysis models are considered as one of the multi-criteria decision-making 

methods, to regard multiple indicators and criteria in selecting the best options, various types of data 

envelopment analysis models can be utilized. One of the applications of data envelopment analysis 

models is for portfolio optimization. In this regard, several types of research have been done to evaluate 

the efficiency and ranking of stocks as well as to identify the effective variables [10]. 
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Due to the increasing significance of investing in the stock market, choosing the optimal portfolio is one 

of the most important concerns of investors for which several methods of stock portfolio selection and 

investment have been presented so far. 

Despite the income and profit that the investor can earn from the formation of her portfolio, the issue of 

reducing investment risk is of particular significance. Nowadays, risk overshadows all aspects of human 

life and always plays an important role in all matters and decisions of individuals. 

Risk conventionally is a kind of danger that is said to happen due to uncertainty about the occurrence of 

an accident in the future, and the higher this uncertainty is, the higher the risk [1]. There are two viewpoints 

to risk definition: 

First Viewpoint. The risk as any possible fluctuations of economic returns in the future. 

Second Viewpoint. The risk as negative fluctuations of economic returns in the future. 

In all financial markets, it is the principle that investors are always risk-averse. Therefore, risk will always 

be present along with return as the two main pillars in portfolio selection. In 1952, Markowit [8] for the 

first time, proposing the mean-variance model, proved that to form a stock portfolio, one could always 

minimize the risk by considering a certain level of return. Markowitz’s model is known as the first 

mathematical model of stock portfolio optimization [2]. 

Before Markowitz introduced his model, it was traditionally believed that increasing diversity in the stock 

portfolio reduced portfolio risk, but they were unable to measure this risk. Markowitz considered the 

expected return per share as the average share return in previous periods and the risk per share as the 

variance of the return per share in previous periods. He showed that the average stock portfolio weight is 

equal to the stock returns, but the stock portfolio risk is not equal to the average stock weight risk. In order 

to calculate the expected return per share (𝐸 (𝑅)), the shareholder must obtain the probable return on the 

securities (𝑅) as well as the probability of the expected return (𝑃𝑟) assuming that the sum of the probabilities 

is equal to one. In this case, the expected return is as follows: 

E(R) = ∑RiPri

m

i=1

. 

In the above formula, 𝑚 represents the number of potential returns per share. 

Assuming the above, the stock portfolio returns 𝐸(𝑅𝑝) will be equal to the weighted return of each share. 

E(Rp) = ∑wi

m

i=1

E(Ri),  

∑wi = 1. 

Where 𝑤𝑖 is the weight of the stock portfolio for the 𝑖th share. 

In the Markowitz model, the risk per share is considered equal to the return variance (𝑉𝐴𝑅 (𝑅)) or its 

second root, the standard deviation (𝑆𝐷 (𝑅)) in previous periods [3]. 

VAR(R) = σ2 = ∑(Ri − E(R))2Pri 

m

r=1

, 
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VAR(R) = σ2 = ∑(Ri − E(R))2Pri .

m

r=1

 

Accordingly, stock portfolio risk based on Markowitz model is shown below [2]: 

VΩ = Min ∑wi
2σi

2
 
+ ∑∑wiwlψil

n

l=1
l≠i

n

i=1

n

i=1

. 

Where 𝑤𝑖 and 𝑤𝑙are the weight of each share, 𝜎𝑖
2 is the variance of stock returns, 𝜓𝑖𝑙is the covariance of 

double returns of shares and 𝑉Ωis the variance of stock returns. 

Finally, the Markowitz model with two objective functions was defined as maximizing stock portfolio 

return and minimizing stock portfolio risk as follows: 

Max   f1(x) = ∑wi

m

i=1

r̅i , 

Min  f2(x) =  ∑wi
2σi

2
 
+ ∑∑wiwlψil

n

l=1
l≠i

n

i=1

n

i=1

, 

s. t: 
 

∑wi = 1, 

wi ≥ 0. 

In financial terms, the set of Pareto optimal solutions for the portfolio selection problem is called the 

efficient set or the efficient boundary. In other words, for a set of assets, a set of portfolios that have 

the least risk for a given return is called the efficient frontier. The efficient boundary is a non-descending 

function that shows the best interaction between risk and return. Markowitz used the concepts of mean 

returns, variance, and covariance to represent the efficient boundary. This model is usually called the 𝐸𝑉 

model, in which 𝐸 represents the mean and 𝑉 represents the variance [11]. 

Tavana et al. [3], using the Markowitz model and using 7 macro criteria and 19 indicators (8 indicators 

as input and 11 indicators as output), examined various stock exchange industries and chose the best 

industries from among them to be in the stock portfolio. After calculating the variables, he entered them 

into the DEA model and calculated the Relative Financial Strength Indices (RFSI) of each company 

using the Anderson-Peterson model.  After calculating the RFSI index, companies with financial 

strength greater than 0.9 in the BCC-O and CCR-I models as suitable investment options were selected. 

After selecting the companies, the weight of each share was determined using the Markowitz model (as 

shown below) and solving the model through genetic technique. 

Max      ∑μixi

N

i=1

− ∑L(yi) − λ∑∑σijxixj ,

N

j=1

N

i=1

N

i=1

 

 
s. t. 
 

 ∑xi ≤ C0

N

i=1

, 

yi = |xi − xi
0|       i = 1,… ,N, 

xi ≥ 0     i = 1,… ,N. 
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Sharifighazvini et al. [12] used the Beasley index in a research to obtain a suitable mathematical model with 

internal market realities to extract the weights of participation of companies' stocks or the fund manager 

in order to obtain the variance-covariance matrix between firm returns, using the Markowitz model. In the 

Beasley benchmark, the average and standard deviation of each company's weekly returns and correlation 

coefficients between 225 Nikkei-listed companies are collected. Therefore, in order to obtain the variance-

covariance matrix between firm returns, the relationship between the standard deviation of the yield of 

each pair of firms and the correlation coefficient between them should be used. 

ρab =
cov(a, b)

√var(a). var(b)
    ⇒    cov(a, b) = ρab . √var(a). var(b).   

Thus, the average weekly return and the variance-covariance matrix are obtained for 225 Nikkei-listed 

companies in the model. In addition, because the index provided by Beasley does not specify the name of 

each company, information about the price and number of shares of each company is generated as a 

random number from the corresponding ranges in 30 selected industries of the Iranian stock market. Also 

in the research, in addition to reducing risk and increasing returns, minimizing portfolio costs has been 

added to the Markowitz model as a goal function. 

Max     ∑wiri

N

i=1

 , 

Min      ∑∑wiwjσij

N

j=1

N

i=1

, 

Min    ∑zi

N

i=1

 , 

s. t. 
 

wi =
cixi

∑ cixi
N
i=1

  i = 1,… ,N , 

∑wi ≤ 1

N

i=1

 , 

∑vi ≤ 1

N

i=1

 , 

viwi ≤ 0.15          i = 1,… ,N, 
 

(1 − vi)wi ≤ 0.1          i = 1,… ,N, 
 
  xi ≤ 0.05Si         i = 1,… ,N, 

 

∑wi ≤ 0.3      j = 1,… , t

 

iϵ[j]

, 

∑Zi ≤ k

N

i=1

 , 

 
𝑥𝑖𝜖{ℤ} , 𝑣𝑖, 𝑤𝑖𝜖{0,1},𝑤𝑖 ≥ 0. 

Where 𝑥𝑖  is the number of selected stocks of type 𝑖, and 𝑣𝑖is a zero-one variable that specifies which 

company's stocks are greater than 15% of the portfolio value. 

𝑤𝑖 is the ratio of type 𝑖 shares in the portfolio and 𝑧𝑖is a zero and one variable to indicate the participation 

or non-participation of type 𝑖 shares in the portfolio. Model parameters are also: 
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𝑟𝑖: Average stock return 𝑖. 

𝑁: Variety of stocks from which the portfolio is selected. 

𝜎𝑖𝑗: Covariance between stocks 𝑖 and 𝑗. 

𝑐𝑖   : Stock price 𝑖. 

𝑠𝑖: Number of shares of the company 𝑖. 

𝑡: Number of industry. 

𝑘: Maximum portfolio variety. 

In order to optimize the stock portfolio, Ahmadi et al. [13] used a combination of data envelopment 

analysis and heuristic factor analysis methods. In the presented research, each company is considered as 

a decision-making unit and input and output indicators are defined for each company. Since each of the 

indicators shows different dimensions of the companies' performance, it divided the output indicators 

into the input indicators so that the target indicators become a single and comparable indicator called 

performance.  Finally, in order to reduce the dimensions of the problem and eliminate the correlation 

between the data, exploratory factor analysis was used. 

Factor analysis is a set of different mathematical and statistical techniques that aim to simplify complex 

data sets. The main question is the answer to the question of whether a set of variables can be described 

in terms of the number of indicators or fewer factors than the variables and what attribute or feature 

each of the indicators (factors) represents. Factor analysis is used for correlation between variables. 

Due to the fact that the model obtained in this research is an integer programming type, it cannot be 

solved by mathematical methods. Therefore, to solve the obtained model, the method of genetic 

algorithm and simulated annealing has been used. 

5| Fuzzy Markowitz Model 

Mashayekhi and Omrani [14] presented a new multi-objective model for portfolio selection including 

cross-performance data envelopment analysis and Markowitz mean-variance model in addition to 

presenting the risk and performance of the portfolio. To take the uncertainty into account, they 

considered the return on assets as trapezoidal fuzzy numbers and finally solved the model by employing 

the second type of genetic algorithm –NSGAII. The basic model presented in the current research is 

the mean-variance cross-sectional performance model of fuzzy Markowitz data envelopment analysis.  

Suppose 𝐴̃ = (𝑎, 𝑏, 𝛼, 𝛽) is a trapezoidal fuzzy number. The cross-sectional performance model of fuzzy 

Markowitz 𝑀𝑉 is expressed as: 

Max  E ( 
  
  
 

∑R̃iwi

N

i=1

) 
  
  
 

= ∑
1

2

N

i=1

[ai + bi +
1

3
(βi − αi)]wi , 

Min  σ2
( 
  
  
 

∑R̃iwi

N

i=1

) 
  
  
 

= (∑
1

2

N

i=1

[bi − ai +
1

3
(αi + βi)]wi)

2 +
1

72
[∑(αi + βi)

N

i=1

wi]
2 , 

Max  ∑wie̅i

N

i=1

, 

s. t. 
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∑zi ≤ h,

N

i=1

 

lizi ≤ wi ≤ uizi    i = 1,… ,N, 

∑wi = 1

N

i=1

 , 

wi ≥ 0     i = 1,… ,N. 

Chen et al. [16] illustrated a comprehensive model for selecting a multi-objective portfolio in a fuzzy 

environment by combining the semi-variance mean model and the cross-sectional data envelopment 

analysis model. Then, the proposed model was re-formulated with the Sharp ratio by considering resource 

constraints as well as other constraints. The sharp factor model is expressed as single-factor and multi-

factor models. In the single-factor model, it is assumed that the returns of all securities are correlated with 

each other for only one reason as a common factor to which all securities react with varying degrees of 

intensity. This common factor is usually considered as the market basket. Due to the fact that in the return 

study, the positive deviation from the average as a profit is more than expected and this issue is considered 

as a positive criterion, so to achieve a more consistent result with reality, semi-variance models are used, 

where only the negative deviation from the expected return is minimized. These models are called the 

mean-half variance model of portfolio optimization.  

Besides the half-variance deviation, there are some downside risks. To assess the Portfolio Performance 

(PE), Chen and Guy [15] considered three types of data envelopment analysis approaches based on fuzzy 

portfolio evaluation models and based on the size of different risk scales, namely the probable variance, 

probable semivariance, and probable semi-absolute deviation. 

6| Conclusion and Suggestion 

In today's world, due to the variety of choices in each field, reviewing and selecting the best options in 

each field is of particular importance and this issue is much more significant for everyone to choose the 

best investment portfolio. To select the best investment portfolio in the general sense and the best stock 

portfolio, in particular, there are various criteria and indicators. Concentrating on the financial structure of 

companies, sales, profitability, business environment, various business, political risks, etc. can be effective 

in choosing a portfolio. Nowadays, according to the development of mathematical models, the use of 

conceptual mathematical models helps investors to be better informed about the returns and risk of 

different stock portfolios based on the patterns and principles of mathematical models and let them choose 

the best type of investment according to their standards as well as their investment policies. Due to the 

unique features of data envelopment analysis, it has attracted the interest of many researchers among a 

wide variety of mathematical models to study and select the best portfolios. Despite the ambiguous nature 

of the data, combining this analysis and Fuzzy concepts leads to coming closer to reality in the models 

such as the Markowitz model. This paper provides an overview of some of the research conducted in 

optimizing investment portfolios using data envelopment analysis models, Markowitz model and the 

concept of fuzzy data. With the advancement of fuzzy concepts and finding new definitions of fuzzy 

concepts that bring issues and models closer to the realities of society, the presented models can be 

transformed into a variety of new fuzzy concepts and further studied. One of the new definitions and 

developments of the fuzzy concept is the description and concept of intuitive fuzzy in which the non-

membership function is considered in addition to the membership function in the fuzzy concept and 

interfered in the relevant calculations. Given that based on field research, very little research has been done 

in the field of portfolio optimization using the Markowitz model and intuitive fuzzy concepts, more 

appropriate choices can be suggested to investors for future research by developing portfolio fuzzy 

optimization models to models with intuitive fuzzy data. 
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Abstract 

 

1 | Introduction  

Despite to the initial reserve of the classical mathematicians, fuzzy mathematics and Fuzzy Logic (FL) 

have found nowadays many and important applications to almost all sectors of human activity (e.g. 

[1], Chapter 6, [2] Chapters 4-8, [3], etc.). Due to its nature of characterizing the ambiguous real life 

situations with multiple values, FL offers among others rich resources for assessment purposes, which 

are more realistic than those of the classical logic [4]-[6]. 

Fuzzy Numbers (FNs), which are a special form of Fuzzy Sets (FS) on the set of real numbers, play 

an important role in fuzzy mathematics analogous to the role played by the ordinary numbers in the 

traditional mathematics. The simplest forms of FNs are the Triangular FNs (TFNs) and the 

Trapezoidal FNs (TpFNs).  
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and on real life problems involving Linear Programming under fuzzy conditions to illustrate the applicability of our 

results in practice. A discussion follows on the perspectives of future research on the subject and the article closes with 
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In the present work we study applications of TFNs and TpFNs to assessment processes and to Linear 

Programming (LP) under fuzzy conditions. The rest of the paper is formulated as follows: Section 2 

contains all the information about FS, FNs and LP which is necessary for the understanding of its 

contents. Section 3 is divided in two parts. In the first part an assessment method is developed using 

TFNs/TpFNs as tools, which enables the calculation of the mean performance of a group of uniform 

objects (individuals, computer systems, etc.) with respect to a common activity performed under fuzzy 

conditions. In the second part a method is developed for solving LP problems with fuzzy data (Fuzzy 

LP). In Section 4 examples are presented illustrating the applicability of both methods to real world 

situations. The assessment outcomes are validated with the parallel use of the GPA index, while the 

solution of the FLP problems is reduced to the solution of ordinary LP problems by ranking the 

corresponding fuzzy coefficients. The article closes with a brief discussion for the perspectives of future 

research on those topics and the final conclusions that are presented in Section 5. 

2| Background  

2.1| Fuzzy Sets and Logic 

For general facts on FS and FL we refer to [2] and for more details to [1]. The FL approach for a 

problem’s solution involves the following steps: 

Fuzzification of the problem’s data by representing them with properly defined FSs. 

Evaluation of the fuzzy data by applying principles and methods of FL in order to express the problem’s 

solution in the form of a unique FS. 

Defuzzification of the problem’s solution in order to “translate” it in the natural language for use with 

the original real-life problem. 

One of the most popular defuzzification methods is the Center of Gravity (COG) technique. When 

using it, the fuzzy outcomes of the problem’s solution are represented by the coordinates of the COG 

of the membership function graph of the FS involved in the solution [7]. 

2.2| Fuzzy Numbers 

It is recalled that a FN is defined as follows: 

Definition 1. A FN is a FS A on the set R of real numbers with membership function  

mA: R [0, 1], such that: 

A is normal, i.e. there exists x in R such that mA(x) = 1, 

A is convex, i.e. all its a-cuts Aa = {xU: mA (x)  a},  a in [0, 1], are closed real intervals, and 

Its membership function y = mA (x) is a piecewise continuous function. 

Remark 1. (Arithmetic operations on FNs): One can define the four basic arithmetic operations on 

FNS in the following two, equivalent to each other, ways: 
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With the help of their a-cuts and the Representation-Decomposition Theorem of Ralesscou - Negoita ([8], 

Theorem 2.1, p.16) for FS. In this way the fuzzy arithmetic is turned to the well known arithmetic of the 

closed real intervals. 

By applying the Zadeh’s extension principle ([1], Section 1.4, p.20), which provides the means for any 

function f  mapping a crisp set X to a crisp set Y to be generalized so that to map fuzzy subsets of X to 

fuzzy subsets of Y. 

In practice the above two general methods of the fuzzy arithmetic, requiring laborious calculations, are 

rarely used in applications, where the utilization of simpler forms of FNs is preferred. For general facts on 

FNs we refer to [9]. 

2.3| Triangular Fuzzy Numbers (TFNs) 

A TFN (a, b, c), with a, b, c in R represents mathematically the fuzzy statement “the value of b lies in the 

interval [a, c]”. The membership function of (a, b, c) is zero outside the interval [a, c], while its graph in [a, 

c] consists of two straight line segments forming a triangle with the OX axis (Fig.1). 

Fig. 1. Graph and COG of the TFN (a, b, c). 

Therefore the analytic definition of a TFN is given as follows: 

Definition 2. Let a, b and c be real numbers with a < b < c. Then the TFN (a, b, c) is a FN with membership 

function: 


 
  


   

   



x a
, x [a, b]

b a
c x

y m(x) x [b, c]
c b
0,        x a or x c

 

Proposition 1. (Defuzzification of a TFN). The coordinates (X, Y) of the COG of the graph of the TFN 

(a, b, c) are calculated by the formulas X = 
a b c

3

 
, Y = 

1

3
. 

Proof. The graph of the TFN (a, b, c) is the triangle ABC of Fig.1, with A (a, 0), B(b, 1) and C (c, 0). Then, 

the COG, say G, of ABC is the intersection point of its medians AN and BM. The proof of the proposition 

is easily obtained by calculating the equations of AN and BM and by solving the linear system of those two 

equations. 
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Remark 2. (Arithmetic Operations on TFNs) It can be shown [9] that the two general methods of 

defining arithmetic operations on FNs mentioned in Remark 2 lead to the following simple rules for the 

addition and subtraction of TFNs: 

Let A = (a, b, c) and B = (a1, b1, c1) be two TFNs. Then: 

The sum A + B = (a+a1, b+b1, c+c1). 

The difference A - B = A + (-B) = (a-c1, b-b1, c-a1), where –B = (-c1, -b1, -a1) is defined to be the opposite 

of. 

In other words, the opposite of a TFN, as well as the sum and the difference of two TFNs are always 

TFNs. On the contrary, the product and the quotient of two TFNs, although they are FNs, they are not 

always TFNs, unless if a, b, c, a1, b1, c1 are in R+ [9]. 

The following two scalar operations can be also be defined: 

k + A= (k+a,  k+b,  k+c), kR. 

kA = (ka,  kb,  kc), if k>0 and kA = (kc, kb, ka), if k<0. 

2.4| Trapezoidal Fuzzy Numbers (TpFNs) 

A TpFN (a, b, c, d) with a, b, c, d in R represents the fuzzy statement approximately in the interval [b, c]. 

Its membership function y=m(x) is zero outside the interval [a, d], while its graph in this interval [a, d] is 

the union of three straight line segments forming a trapezoid with the X-axis (see Fig. 2), 

Fig. 2. Graph of the TpFN (a, b, c, d). 

Therefore, the analytic definition of a TpFN is given as follows: 

Definition 3. Let a < b < c< d be given real numbers. Then the TpFN (a, b, c, d) is the FN with 

membership function: 


 
  

 
 


 

   


x a
, x [a, b]

b a
x 1, , x [b, c]

y m(x)
d x

x [c,d]
d c
0,        x a and x d
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Remark 3. It is easy to observe that the TpFNs are generalizations of TFNs. In fact, the TFN (a, b, d) can 

be considered as a special case of the TpFN (a, b, c, d) with b=c. 

The TFNs and the TpFNs are special cases of the LR – FNs of Dubois and Prade [10]. Generalizing the 

definitions of TFNs and TpFNs one can define n-agonal FNs of the form (a1, a2,… , an) for any integer n, 

n  3; e.g. see Section 2 of [11] for the definition of the hexagonal FNs.  

It can be shown [9] that the addition and subtraction of two TpFNs are performed in the same way that it 

was mentioned in Remark 2 for TFNs. Also, the two scalar operations that have been defined in Remark 2 

for TFNs hold also for TpFNs. 

The following two propositions provide two alternative ways for defuzzifying a given TpFN: 

Proposition 2. (GOG of a TpFN): The coordinates (X, Y) of the COG of the graph of the TpFN (a, b, c, 

d) are calculated by the formulas X = 
2 2 2 2c d a b dc ba

3(c d a b)

    

  
, Y = 

2c d a 2b

3( c d a b)

  

  
. 

Proof. We divide the trapezoid forming the graph of the TpFN (a, b, c, d) in three parts, two triangles and 

one rectangle (Fig. 2). The coordinates of the three vertices of the triangle ABE are (a, 0), (b, 1) and (b, 0) 

respectively, therefore by Proposition 4 the COG of this triangle is the point C1 (
a 2b 1

,
3 3


).          

Similarly one finds that the COG of the triangle FCD is the point C2 (
d 2c 1

,
3 3


). Also, it is easy to check 

that the COG of the rectangle BCFE, being the intersection point of its diagonals, is the point C3 (

b c 1
,

2 2


). Further, the areas of the two triangles are equal to S1 = 

b a

2


 and S2 = 

d c

2


respectively, while 

the area of the rectangle is equal to S3 = c- b.  

Therefore, the coordinates of the COG of the trapezoid, being the resultant of the COGs Ci (xi, yi), for 

i=1, 2, 3, are calculated by the formulas X = 
3

i i
í 1

1
S x

S 
 , Y = 

3

i i
í 1

1
S y

S 
  (1), where S = S1 + S2 + S3 = 

c d b a

2

  
 is the area of the trapezoid [12]. 

The proof is completed by replacing the above found values of S, Si, xi and yi, i = 1, 2, 3, in formulas (1) 

and by performing the corresponding operations. 

Proposition 3. (GOG of the GOGs of a TpFN): Consider the graph of the TpFN (α, b, c, d) (Fig. 3). Let 

G1 and G2 be the COGs of the rectangular triangles AEB and CFD and let G3 be the COG of the rectangle 
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BEFC respectively. Then G1G2G3 is always a triangle, whose COG has coordinates

2( a d) 7( b c ) 7
X , Y

18 18

  
  . 

Fig. 3. The GOG of the GOGs of the TpFN (a, b, c, d). 

Proof. By Proposition 4 one finds that G1 (
a 2b 1

,
3 3


) and G2 (

d 2c 1
,

3 3


). Further, it is easy to check that 

the GOG G3 of the rectangle BCFD, being the intersection of its diagonals, has coordinates (
b c 1

,
2 2



). 

The y – coordinates of all points of the straight line defined by the line segment G1G2 are equal to
1

3
, 

therefore the point G3, having y – coordinate equal to
1

2
, does not belong to this line. Hence, by 

Proposition 6, the COG G΄ of the triangle G1G2G3 has coordinates X = (
a 2b

3


  

d 2c

3




b c

2


): 3 = 

2( a d) 7( b c )

18

  
 and Y = (

1

3


1

3


1

2
): 3

7

18
 . 

Remark 4. Since the COGs G1, G2 and G3 are the balancing points of the triangles AEB and CFD and 

of the rectangle BEFC respectively, the COG G΄ of the triangle G1G2G3, being the balancing point of 

the triangle formed by those COGs, can be considered instead of the COG G of the trapezoid ABCD 

for defuzzifying the TpFN (a, b, c, d). The advantage of the choice of G΄ instead of G is that the formulas 

calculating the coordinates of G΄ (Proposition 3) are simpler than those calculating the COG G of the 

trapezoid ABCD (Proposition 2). 

An important problem of the fuzzy arithmetic is the ordering of FNs, i.e. the process of determining 

whether a given FN is larger or smaller than another one. This problem can be solved through the 

introduction of a ranking function, say R, which maps each FN on the real line, where a natural order 

exists. Several ranking methods have been proposed until today, like the lexicographic screening [13], 

the use of an area between the centroid and original points [14], the subinterval average method [11], 

etc. 

Here, under the light of Propositions (1) and (3) and of Remark 4, we define the ranking functions for 

TFNs and TpFNs as follows: 

Definition 11. Let A be a FN. Then: 

If A is a TFN of the form A {α, b, c), we define R(A) = 
a b c

3

 
.  

If A is a TpFN of the form A {α, b, c, d), we define R(A) =
2( a d) 7( b c )

18

  
. 

2.5| Linear Programming 

It is well known that Linear Programming (LP) is a technique for the optimization (maximization or 

minimization) of a linear objective function subject to linear equality and inequality constraints. The 
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feasible region of a LP problem is a convex polytope, which is a generalization of the three-dimensional 

polyhedron in the n-dimensional real space Rn, where n is an integer, n   2.   

A LP algorithm determines a point of the LP polytope, where the objective function takes its optimal value, 

if such a point exists. In 1947, Dantzig invented the SIMPLEX algorithm [15] that has efficiently tackled 

the LP problem in most cases. Further, in 1948 Dantzig, adopting a conjecture of John von Neuman, who 

worked on an equivalent problem in Game Theory, provided a formal proof of the theory of Duality [16]. 

According to the above theory every LP problem has a dual problem the optimal solution of which, if 

there exists, provides an optimal solution of the original problem. For general facts about the SIMPLEX 

algorithm we refer to Chapters 3 and 4 of [17]. 

LP, apart from mathematics, is widely used nowadays in business and economics, in several engineering 

problems, etc. Many practical problems of operations research can be expressed as LP problems. However, 

in large and complex systems, like the socio-economic, the biological ones, etc. ., it is often very difficult 

to solve satisfactorily the LP problems with the standard theory, since the necessary data cannot be easily 

determined precisely and therefore estimates of them are used in practice. The reason for this is that such 

kind of systems usually involve many different and constantly changing factors the relationships among 

which are indeterminate, making their operation mechanisms to be not clear. In order to obtain good 

results in such cases one may apply techniques FLP, e.g. see [18] and [19], etc.  

3| Main Results 

3.1| Assessment under Fuzzy Conditions  

Assume that one wants to evaluate the mean performance of a group of uniform objects (individuals, 

computer systems, etc.) participating in a common activity. When the individual performance of the 

group’s members is assessed by using numerical grades (scores), the traditional method for evaluating the 

group’s mean performance is the calculation of the mean value of those scores. However, cases appear 

frequently in practice, where the individual performance is assessed by using linguistic instead of numerical 

grades. For example, this frequently happens for student assessment, usually for reasons of more elasticity 

that reduces the student pressure created by the existence of the strict numerical scores. 

A standard method for such kind of assessment is the use of the linguistic expressions (labels) A = 

excellent, B = very good, C = good, D = fair and F = unsatisfactory (failed). In certain cases some insert 

the label E = less than satisfactory between D and F, while others use labels like B+, B-, etc., for a more 

strict assessment. It becomes evident that such kind of assessment involves a degree of fuzziness caused 

by the existence of the linguistic labels, which are less accurate than the numerical scores. Obviously, in 

the linguistic assessment the calculation of the mean value of the group’s members’ grades is not possible. 

An alternative method for assessing a group’s overall performance in such cases is the calculation of the 

Grade Point Average (GPA) index ([2], Chapter 6, p.125). The GPA index is a weighted mean calculated 

by the formula  

In the above formula n denotes the total number of the group’s members and nA, nB, nC, nD and nF denote 

the numbers of the group’s members that demonstrated excellent, very good, good, fair and unsatisfactory 

performance respectively. In case of the ideal performance (nA = n) formula (1) gives that GPA = 4, 

whereas in case of the worst performance (nF = n) it gives that GPA = 4. Therefore, we have in general 

that 0    GPA   4, which means that values of GPA greater than 2 could be considered as indicating a 

more than satisfactory performance. However, since in Eq. (1) greater coefficients (weights) are assigned 

to the higher scores, it becomes evident that the GPA index reflects actually not the mean, but the group’s 

quality performance.  

   
F D C B A

0n 1n 2n 3n 4n

n
 (1) 
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Here a method will be developed for an approximate evaluation in such cases of the group’s mean 

performance that uses TFNs or TpFNs as tools. For this, we need the following definition: 

Definition 5. Let Ai = (a1i, a2i, a3i, a4i), i = 1, 2,…, n  be TFNs/TpFNs (see Remark 3), where n is a 

nonnegative integer, n  2. Then the mean value of the Ai’s is defined to be the TFN /TpFN, 

 

 

In case of utilizing TFNs as tools the steps of the new assessment method are the following: 

Assign a scale of numerical scores from 1 to 100 to the linguistic grades A, B, C, D and F as follows: A 

(85–100), B (75–84), C (60–74), D (50–59) and F (0–49)1.  

For simplifying the notation use the same letters to represent the above grades by the TFNs.  

A = (85, 92.5, 100), B = (75, 79.5, 84), C (60, 67, 74), D (50, 54.5, 59) and F (0, 24.5, 49), respectively, 

where the middle entry of each of them is equal to the mean value of its other two entries.  

Evaluate the individual performance of all the group’s members using the above qualitative grades. This 

enables one to assign a TFN A, B, C, D or F to each member. Then the mean value M of all those TFNs 

is equal to the TFN 

M (a, b, c) = 
1

n
 (nA A + nB B + nCC + nDD + nFF). 

Use the TFN M (a, b, c) for evaluating the group’s mean performance. It is straightforward to check 

that the three entries of the TFN M are equal to  

A B C D F
85n 75n 60n 50n 0n

a
n

   
   A B C D F

92.5n 79.5n 67 n 54.5n 24.5n
b

n

   
  and  

A B C D F
100n 84n 74n 59n 49n

c .
n

   
  Then, by Proposition 6 one gets that  

X (M) = 
a b c

3

 
  A B C D F

92.5n 79.5n 67 n 54.5n 24.5n a c
 =  = b ( 3)

n 2

    
. 

Observe that, in the extreme (hypothetical) case where the lowest possible score has been assigned to 

each member of the group (i.e. the score 85 to nA members, the score 75 to nB members, etc.) the mean 

value of all those scores is equal to a. On the contrary, if the greatest score has been assigned to each 

member, then the mean value of all scores is equal to c. Therefore the value of X(M), being equal to the 

mean value of a and c, provides a reliable approximation of the group’s mean performance. 

1The scores assigned to the linguistic grades are not standard and may differ from case to case. For instance, in a more rigorous 

assessment one could take A(90-100), B (80-89), C(70-79), D (60-69), F(<60), etc. 

1

n
 (2) 
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In cases where multiple referees of the group’s performance exist one could utilize TpFNs instead of TFNs 

for evaluating the group’s mean performance. In that case a different TpFN is assigned to each member 

of the group representing its individual performance, while the other steps of the method remain 

unchanged (see Example 16). 

3.2| Fuzzy Linear Programming  

The general form of a FLP problem is the following: Maximize (or minimize) the linear expression  

F = A1x1 + A2x2 +….+ Anxn subject to constraints of the form  xj   0, 

Ai1x1+ Ai2x2 +…..+ Ainxn ( )  Bi, where i = 1, 2, …, m ,  j = 1, 2,,,, n and Aj, Aij, Bi are FNs.  Here a new 

method will be proposed for solving FLP problems. We start with the following definition: 

Definition 5. The Degree of Fuzziness (DoF) of a n-agonal FN A = (a1, … , an) is defined to be the real 

number D = an – a1. We write then DoF (A) = D. 

The following two propositions are needed for developing the new method for solving FLP problems:  

Proposition 4. Let A be a TFN with DoF (A) = D and R(A) = R. Then A can be written in the form  

A = (α, 3R-2α-D, α + D), where α is a real number such that R - 
2D

3
< α < R - 

D

3
. 

Proof. Let A (α, b, c) be the given TFN, with α, b, c real numbers such that α<b<c. Then, since  

DoF(A) = c - α = D, is c = α + D.  Therefore, R(A) = 
a b c

3

 
= 

2a b D

3

 
= R, which gives that  

b = 3R-2α-D. Consequently we have that α < 3R-2α-D < α + D. The left side of the last inequality implies 

that 3α < 3R-D, or α< R-
D

3
. Also its right side implies that -3α < 2D-3R, or α> R-

2D

3
, which completes 

the proof. 

Proposition 5. Let A be a TpFN with DoF (A) = D and R(A) = R. Then A can be written in the form  

A = (α, b, c, α + D), where α, b and c are real numbers such that α < b    c < a + D and   

b + c =
18R 4a 2D

7

 
. 

Proof. Let A (α, b, c, d) be the given TFN, with α, b, c, d real numbers such that a < b   c < d. Since  

D(A) = d - α  = D, it is d = α + D. Also, by Definition 11 we have that R = 
2( 2a D) 7( b c )

18

  
 wherefrom 

one gets the expression of b + c in the required form. 

The proposed in this work method for solving a Fuzzy LP problem involves the following steps: 

Ranking of the FNs Aj, Aij and Bi. 

Solution of the obtained in the previous step ordinary LP problem with the standard theory. 
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Conversion of the values of the decision variables in the optimal solution to FNs with the desired DoF. 

The last step is not compulsory, but it is useful in problems of vague structure, where a fuzzy expression 

of their solution is often preferable than the crisp one (see Examples 17 and 18). 

4| Applications 

4.1| Examples of Assessment Problems  

Example 1. Table 1 depicts the performance of students of two Departments, say D1 and D2, of the 

School of Management and Economics of the Graduate Technological Educational Institute (T. E. I.) 

of Western Greece in their common progress exam for the course “Mathematics for Economists I” in 

terms of the linguistic grades A, B, C, D and F: 

Table 1. Student performance in terms of the linguistic grades. 

   

 

 

 

It is asked to evaluate the two Departments overall quality and mean performance. 

Quality performance (GPA index): Replacing the data of Table 1 to Formula (1) and making the 

corresponding calculations one finds  the same value GPA = 
43

17
  2.53 for the two Departments that 

indicates a more than satisfactory quality performance. 

Mean performance (using TFNs): According to the assessment method developed in the previous 

section it becomes clear that Table 1 gives rise to 170 TFNs representing the individual performance of 

the students of D1 and 255 TFNs representing the individual performance of the students of D2. 

Applying equation (2) it is straightforward to check that the mean values of the above TFNs are: 

D1 =  
1

170
. (60A+40B+20C+30D+20F)   (63.53, 73.5, 83.47), and D2 =  

1

255
. 

(60A+90B+45C+45D+15F)   (65.88, 72.71, 79.53).   

Therefore, Eq. (3) gives that X(D1) =  73.5 and  X(D2) =  72.71. Consequently, both departments 

demonstrated a good (C) mean performance, with the performance of D1 being slightly better. 

Example 2. The individual performance of the five players of a basket-ball team who started a game 

was assessed by six different athletic journalists using a scale from 0 to 100 as follows: P1 (player 1): 43, 

48, 49, 49, 50, 52, P2: 81, 83. 85, 88, 91, 95, P3: 76, 82, 89, 95, 95, 98, P4: 86, 86, 87, 87, 87, 88 and P5: 

35, 40, 44, 52, 59, 62. It is asked to assess the mean performance of the five players and their overall 

quality performance by using the linguistic grades A, B, C, D and F. Also, for reasons of comparison, it 

is asked to approximate their mean performance in two ways, by using TFNs and TpFNs. 

Mean performance: Adding the 5 * 6 = 30 in total scores assigned by the journalists to the five players 

and dividing the corresponding sum by 30 one finds that the mean value of those scores is   

Grade D1 D2 

A 60 60 
B 40 90 
C 20 45 
D 30 45 
F 20 15 
Total  170 255 



199 

 

A
ss

e
ss

m
e
n

t 
a
n

d
 l

in
e
a
r 

p
ro

g
ra

m
m

in
g

 u
n

d
e
r 

fu
z
z
y
 c

o
n

d
it

io
n

s
 

 
approximately equal to 72.07. Therefore the mean performance of the five players can be characterized as 

good (C).  

Quality performance: A simple observation of the given data shows that 14 of the 30 in total scores 

correspond to the linguistic grade A, four to B, one to C, four to D and seven to F. Replacing those values 

to Formula (1) one finds that the GPA index is approximately equal to 2.47. Therefore, the five players’ 

overall quality performance can be characterized as more than satisfactory. 

Using TFNS: Forming the TFNs A, B, C, D and F and observing the 5*6 = 30 in total player scores it 

becomes clear that 14 of them correspond to the TFN A, four to B, one to C, four to D and seven to F. 

The mean value of the above TFNs (Definition 11) is equal to M = 
1

30
(14A + 4B + C + 4D + 7F)  (58.33, 

68.98, 79.63).  

Therefore the mean performance of the five players is approximated by X(M) = 68.98 (good). 

Using TpFNs: A TpFN (denoted, for simplicity, by the same letter) is assigned to each basket-ball player 

as follows: P1 = (0, 43, 52, 59), P2 = (75, 81, 95, 100), P3 = (75, 76, 98, 100), P4 = (85, 86, 88, 100) and P5 = 

(0, 35, 62, 74). Each of the above TpFNs describes numerically the individual performance of the 

corresponding player in the form (a, b, c, d), where a and d are the lower and higher scores respectively 

corresponding to his performance, while c  and b are the lower and higher scores respectively assigned to 

the corresponding player by the athletic journalists. For example, the performance of the player P1 was 

characterized by the journalists from unsatisfactory (scores 43, 48, 49, 49) to fair (scores 50, 52), which 

means that a = 0 (lower score for F) and d = 59 (lower score for D), etc.  

The mean value of the TpFNs Pi , i =1, 2, 3, 4, 5 (Definition 13), is equal to P = 
5

i
i 1

1
P

5 
 = (47, 64.2, 79, 86.6).  

Therefore, under the light of Remark 10 and Proposition 9 one finds that X(P) = 

2( 47 86.6) 7(64.2 79)
70.53

18

  
 . This outcome shows that the five players demonstrated a good (C) 

mean performance. 

The outcomes obtained from the application of the assessment methods used in Examples (15) and (16) are 

depicted in Tables (2)-(3) below. 

Table 2. The outcomes of Example 1. 

 

 

 

     Table 3. The outcomes of Example 2. 

   

 

 

 

Method D1 D2 Performance 

GPA index 2.53 2.53 More than 
satisfactory 

TFNs 73.5 72.68 Good (C) 

Method  Performance 

Mean value 72.07 Good (C) 
GPA index 2.47 More than 

satisfactory 
TFNs 68.98 Good (C) 
TpFNs 70.53 Good (C) 
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Observing those Tables one can see that the fuzzy outcomes (TFNs/TpFNs) are more or less 

compatible to the crisp ones (mean value/GPA index). This provides a strong indication that the fuzzy 

assessment method developed in this work “behaves” well. The appearing, relatively small, numerical 

differences are due to the different “philosophy” of the methods used (mean and quality performance, 

bi-valued and fuzzy logic).  

The approximation of the player mean performance (70.53) obtained in Example 2 using TpFNs is better 

(nearer to the accurate mean value 72.07 of the numerical scores) than that obtained by using TFNs 

(68.98). This is explained by the fact that the TpFNs, due to the way of their construction, describe more 

accurately than the TFNs each player’s individual performance. However, it is not always easy in practice 

to use TpFNs instead of TFNs. Another advantage of using TpFNs as assessment tools is that, in 

contrast to TFNs, they make possible the comparison of the individual performance of any two 

members of the group, even among those whose performance has been characterized by the same 

qualitative grade. At any case, the fuzzy approximation of a group’s mean performance is useful only 

when no numerical scores are given assessing the idividual performance of its members. 

4.2| Examples of FLP Problems 

Example 3. In a furniture factory it has been estimated that the construction of a set of tables needs 2 

- 3 working hours (w. h.) for assembling, 2.5 - 3.5 w. h. for elaboration (plane, etc.) and 0.75 - 1.25 w. h. 

for polishing, while the construction of a set of desks needs 0.8 - 1.2, 2 - 4 and 1.5 - 2.5 w. h. respectively 

for each of the above procedures. According to the factory’s existing number of workers, at most 20 w. 

h. per day can be spent for the assembling, at most 30 w. h. for the elaboration and at most 18 w. h. for 

the polishing of the tables and desks. If the profit from the sale of a set of tables is between 2.7 and 3.3 

hundred euros and of a set of desks is between 3.8 and 4.2 hundred euros1, find how many sets of tables 

and desks should be constructed daily to maximize the factory’s total profit. Express the problem’s 

optimal solution with TFNs of DoF equal to 1. 

Solution. Let x1 and x2 be the sets of tables and desks to be constructed daily. Then, using TFNs, the 

problem can be mathematically formulated as follows2: 

Maximize F = (2.7, 3, 3.3)x1 + (3.8, 4, 4.2)x2 subject to  x1, x2   0 and 

(2, 2.5, 3)x1 + (0.8, 1, 1.2]x2   (19, 20, 21), 

(2.5, 3, 3.5)x1 + (2, 3, 4)x2   (29, 30, 31), 

(0.75, 1, 1.25)x1 + (1.5, 2, 2.5)x2   (15, 16, 17). 

The ranking of the TFNs involved leads to the following LP maximization problem of canonical form:  

Maximize f(x1, x2) = 3x1 + 4x2 subject to x1, x2   0 and 2.5x1 + x2  20, 3x1 + 3x2   30 , and x1 + 2x2   

16. 

1The profit is changing depending upon the price of the wood, the salaries of the workers, etc. 

2 The mathematical formulation of the problem using TFNs is not unique. Here we have taken 



a c

b
2

 for all the TFNs involved, 

but this is not compulsory. The change of the values of the above TFNs, changes of course the ordinary LP problem obtained by 
ranking them, but the change of its optimal solution is relatively small.  
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Adding the slack variables s1, s2, s3 for converting the last three inequalities to equations one forms the 

problem’s first SIMPLEX matrix, which corresponds to the feasible solution f(0, 0) = 0, as follows: 

 
 
 
        
 

 
 
  
 
 
 
       
 
   
 
  

1 2 1 2 3

1

2

3

x x s s s | Const.

2.5 1 1 0 0 | 20 s

3 3 0 1 0 | 30 s

1 2 0 0 1 | 16 s

|

3 4 0 0 0 | 0 f(0,0)

. 

Denote by L1, L2, L3, L4 the rows of the above matrix, the fourth one being the net evaluation row.  Since -4 

is the smaller (negative) number of the net evaluation row and 
16 30 20

2 3 1
  , the pivot element 2 lies in the 

intersection of the third row and second column Therefore, applying the linear transformations L3
  

1

2

L3 = L΄3 and L1 L1 – L΄3, L2 L2 – 3L΄3, L4 L4 + 4L΄3, one obtains the second SIMPLEX matrix, 

which corresponds to the feasible solution f(0, 8) = 32 and is the following: 

 
 
 
        
 
 

  
 
 

  
 
 
 
 
      
 
   
  

1 2 1 2 3

1

2

2

x x s s s | Const.

1
2 0 1 0 | 12 s

23 3
0 0 1 | 6 s

2 21 1
1 0 0 | 8 x

2 2 |

1 0 0 0 0 | 32 f(0,8)

. 

In this matrix the pivot element
3

2
lies in the intersection of the second row and first column, therefore 

working as above one obtains the third SIMPLEX matrix, which is: 

 
 
 
        
 
 

   
 
 
  
 
 
  
 
      
 
 
 

 
 
 

1 2 1 2 3

1

1

2

x x s s s | Const.

4 3
0 0 1 | 4 s

3 22
1 0 0 1 | 4 x

31
0 1 0 1 | 6 x

3 |

2
0 0 0 1 | 36 f(4,6)

3

. 

Since there is no negative index in the net evaluation row, this is the last SIMPLEX matrix. Therefore f (4, 

6) = 36 is the optimal solution maximizing the objective function. Further, since both the decision variables 

x1 and x2 are basic variables, i.e. they participate in the optimal solution, the above solution is unique. 
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Converting, with the help of Proposition 15, the values of the decision variables in the above solution to 

TFNs  with DoF equal to 1, one finds that x1 = (α, 11-2α, α+1] with 
10 11

a
3 3

   and x2 = (a, 17-2a, a+1) 

with. 
16 17

a
3 3
  . Therefore a fuzzy expression of the optimal solution states that the factory’s maximal 

profit corresponds to a daily production between α and α+1 groups of tables with 3.33 a 3.67  and 

between a and a+1 groups of desks with 5.33 < a < 5.67.  

However, taking for example α = 3.5 and a = 5.5 and considering the extreme in this case values of the 

daily construction of 4.5 groups of tables and 6.5 groups of desks, one finds that they are needed 33 in 

total w. h. for elaboration, whereas the maximum available w. h. are only 30. In other words, a fuzzy 

expression of the solution does not guarantee that all the values of the decision variables within the 

boundaries of the corresponding TFNs are feasible solutions. 

Example 4. Three kinds of food, say F1, F2 and F3, are used in a poultry farm for feeding the chickens, 

their cost varying between 38 - 42, 17 - 23 and 55 - 65 cents per kilo respectively. The food F1 contains 

between 1.5 - 2.5 units of iron and 4 - 6 units of vitamins per kilo, F2 contains 3.2 - 4.8, 0.6 – 1.4 and F3 

contains 1.7 – 2.3, 0.8 – 1.2 units per kilo respectively. It has been decided that the chickens must receive 

at least 24 units of iron and 8 units of vitamins per day. How must one mix the three foods so that to 

minimize the cost of the food? Express the problem’s solution with TpFNs of DoF equal to 2. 

Solution. Let x1, x2 and x3 be the quantities of kilos to be mixed for each of the foods F1, F2 and F3 

respectively. Then, using TpFNs the problem’s mathematical model could be formulated as follows1:  

Minimize F = (38, 39, 41, 42) x1 + (17, 18, 22, 23) x2 + (55, 56, 64, 65] x3 subject to x1, x2 , x3  0 and 

(1.5, 1.8, 2.2, 2.5) x1+ (3.2, 3.5, 4.5, 4.8) x2+ (1.7, 1.9, 2.1,  2.3] x3 [22, 23, 25, 26] 

[4, 4.5, 5.5, 6] x1+ [0.6, 0.8, 1.2, 1.4] x2 +[0.8, 0.9, 1.1, 1.2]x3   (6, 7, 9, 1 0). 

The ranking of the TpFNs by Definition 13 leads to the following LP minimization problem of canonical 

form: 

Minimize f (x1, x2, x2) = 40x1 + 20x2 + 60x3 subject to  x1, x2 , x3  0  and 2x1+ 4x2+ 2x3 24, 5x1 + x2 

+ x3     8. 

The dual of the above problem is: the following:  

Maximize g (z1, z2) = 24z1 + 8z2 subject to t z1, z2   0, 2z1 + 5z2  40, 4z1 + z2    20, 2z1 + z2    60 

Working similarly with Example 3 it is straightforward to check that the last SIMPLEX matrix of the 

dual problem is the following: 

1The problem‘s mathematical formulation using TpFNs is not unique, but the change of its optimal solution in each case is relatively 

small.  
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 
 
 
        
 
 

 
 
 
  
 
 
   
 
      
 
 
 

 
 
 

1 2 1 2 3

2

1

3

z z s s s | Const.

2 1 20
0 1 0 | z

9 9 31 5 10
1 0 0 | z

18 18 31 4 140
0 0 1 | s

9 9 3|

4 52 400 10 20
0 0 0 | g( , )

9 9 3 3 3

. 

  Therefore the solution of the original minimization problem is f min = f(
4

9
,

52

9
, 0) = 

400

3
.  

 In other words, the minimal cost of the chicken food is 
400

3
  133 cents and will be succeeded by mixing 

4

9
  0.44 kilos from food F1 and 

52

9
  5.77 kilos from food F2.   

Converting the values of the decision variables in the above solution to TpFNs with DoF equal to 2 one 

finds with the help of Proposition 16 that x1, x2, x3 must be of the form (α, b, c, α + 2) with  

α < b   c < α + 2, b+ c =
18R 4a 4

7

 
 and R = 

4

9
 or R = 

52

9
 or R= 0 respectively. 

For R = 
4

9
 one finds that b + c =

4 4a

7


. Therefore b <

4 4a

7


 - b or b < 

2 2a

7


which gives that   

α < 
2 2a

7


 or  α < 

2

9
. Taking for example α =

1

9
, one finds that b < 

2
2

9
7



=
16

63
. Therefore, taking for 

example b =
15

63
, we obtain that c =

4
4

9
7



 - 
15

63
 = 

17

63
. Therefore x1 = (

7

63
, 

15

63
, 

17

63
, 

133

63
). 

Working similarly for R = 
52

9
and R = 0 one obtains that x2 = (

196

63
, 

340

63
, 

362

63
, 

488

63
) 

and x3 = (-
21

63
, -

15

63
, -

9

63
, 

60

63
), respectively. 

Therefore, since a TpFN (a, b, c, d) expresses mathematically the fuzzy statement that the interval  [b, c] 

lies within the interval [a, d], a fuzzy expression of the problem’s optimal solution states that the minimal 

cost of the chickens’ food will be succeeded by mixing  between 
15

63
0.24 , 

17

63
  0.27, between 

340

63


5.4 , 
362

63
5.75  and between -

15
0.24

63
  , - 

17
0.27

63
  kilos from each one of the foods F1, F2 and F3 

respectively. The values of x3 are not feasible and must be replaced by 0, whereas the values of x1 and x2 

must be checked as we did in Example 3. 
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5| Discussion and Conclusions 

The target of the present paper was two-folded. First, a combination of TFNs / TpFNs and of the 

COG defuzzification technique was used for assessment purposes. Examples were presented on student 

and basket-ball player assessment and the new fuzzy method was validated by comparing its outcomes 

with those of traditional assessment methods (calculation of the mean value of scores and of the GPA 

index). The advantage of this method is that it can be used for evaluating a group’s mean performance 

when qualitative grades are used instead of numerical scores for assessing the individual performance of 

its members.  

Second, a new technique was developed for solving Fuzzy LP problems by ranking the FNs involved 

and by solving the ordinary LP problem obtained in this way with the standard theory. Real-life examples 

were presented to illustrate the applicability of the new technique in practice. In LP problems with a 

vague structure a fuzzy expression of their solution is often preferable than a crisp one. This was 

attempted in the present work by converting the values of the decision variables in the optimal solution 

of the obtained ordinary LP problem to FNs with the desired DoF. The smaller the value of the chosen 

DoF, the more creditable is the fuzzy expression of the problem’s optimal solution. 

The new assessment method that has been developed in this work has a general character. This means 

that, apart for student and athlete assessment, it could be utilized for assessing a great variety of other 

human or machine (e.g. Case – Based Reasoning or Decision – Making systems) activities. This is an 

important direction for future research. Also a technique similar to that applied here for solving FLP 

problems could be used for solving systems of equations with fuzzy coefficients, as well as for solving 

LP problems and systems of equations with grey coefficients [20]. 
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Abstract 

 

1 | Introduction  

Words are vital in our description and understanding of emotions and means different things to 

different people based on different instances and some are uncertain [1]. Hence, there is a need for a 

model that can capture the uncertainties of these words. Emotions are feelings or involuntary 

physiological response of a person to a situation, words or things. Emotion is defined using two 

approaches:  the classical approach and the use of multidimensional space. The classical approach 

uses fixed number of emotion classes such as {positive, non-positive}, {negative, non-negative}, and 

{angry, non-angry} in describing emotion-related states.  
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However, this approach lacks the ability to handle many types of real-life emotions while the second 

approach represents emotion using each point in the multidimensional space and the dimensions that are 

mostly used are valence, activation, and dominance [2] and [3]. Valence represents negative to positive axis, 

activation represents calm to excited axis while dominance represents weak to strong axis in the three 

dimensional space [4]. However, the two approaches have failed to represent the uncertainty a person has 

about the emotion words as reflected in real-world and are somewhat vague and not precisely defined sets.  

Therefore, application of fuzzy set model is well suitable because of its ability to cope with uncertainties 

[5] and [6] and can represent each emotion dimension using intervals rather than fixed points [7].   

The Type -1 Fuzzy Set (T1-FS) is a generalization of traditional classical sets in which a concept can possess 

a certain degree of truth, where the truth value may range between completely true and completely false.  

However, T1-FS lacks the ability to adequately represent or directly handle data uncertainty because its 

membership function is crisp in nature [8]. The optimal design of fuzzy systems enables making decisions 

based on a structure built from the knowledge of experts and guided by membership functions and fuzzy 

rules [28]. “The membership functions of type-2 fuzzy sets are (n+2)-dimensional, while membership 

functions of type-1 fuzzy sets are only (n+1)-dimensional (assuming that the universe of discourse has n 

dimensions). Thus, type-2 fuzzy sets allow more degrees of freedom in representing uncertainty” [32]. 

Type-2 Fuzzy Set (T2-FS) which is an extension of T1-FS was used in [9] to address the inabilities of T1-

FLS.  Interval Type-2 Fuzzy Logic (IT2FL) is a simplified version of the general T2FLS that uses intervals 

to handle uncertainty in the membership function. The structure of T2-FIS is similar to T1-FLS but with 

additional component called the type reducer modified to accommodate T2F set. Type Reducer is used to 

reduce the output of the T2 inference engine to type-1 before defuzzification. An IT2FL can better model 

intrapersonal and interpersonal uncertainties, which are intrinsic to natural language, because the 

membership grade of an IT2 Fuzzy set is an interval instead of a crisp number as in a T1 FS [31]. 

 Though, many works have been done in the field of emotion words, [8], [10]- [18], however, attempts to 

analyze emotion words in Igbo non-English languages have not been impacted in any way. This study uses 

IT2FL to analyze Igbo Emotion Words. The term “Igbo” in this context is used to describe the language 

spoken primarily by Igbo ethnic group in Nigeria. The Igbo belong to the Sudanic linguistic group of the 

Kwa division according to [19] and [20]. This wide presence of the Igbos is the basis for selecting the 

emotions words in Igbo language for analysis using IT2FL. 

This study used IT2FL to analyze Igbo emotion words because of its ability to adequately handle emotion 

word uncertainties described by its Footprint Of Uncertainty (FOU), which is the uncertainty about the 

union of all the primary MFs. Uncertainty is a characteristic of information, which may be incomplete, 

inaccurate, undefined, inconsistent. Primary Membership Functions with where both the standard 

deviation and the uncertain are popular FOUs for a Gaussian because of their parsimony and 

differentiability [29]. IT2F sets are computed using the interval approach method which is divided into two 

parts: the data part and the fuzzy set part. The data part preprocessed data and its statistics computed for 

the interval that survived the preprocessing stages while the fuzzy set part determined the nature of the 

footprint of uncertainty; the IT2F set mathematical models for each emotion characteristics of each 

emotion word is also computed. The data used in this work was collected from 15 (fifteen) subjects who 

were asked to enter an interval for each of the emotion characteristics: Valence, Activation and Dominance 

on an interval survey of the 30 (thirty) Igbo emotion words. 

IT2F sets are computed using the interval approach method which is divided into two parts: the data part 

and the fuzzy set part. The data part preprocessed data and its statistics computed for the interval that 

survived the preprocessing stages while the fuzzy set part determined the nature of the footprint of 

uncertainty; the IT2F set mathematical models for each emotion characteristics of each emotion word is 

also computed. The data used in this work was collected from 15 (fifteen) subjects who were asked to enter 

an interval for each of the emotion characteristics: Valence, Activation and Dominance on an interval 

survey of the 30 (thirty) Igbo emotion words. This paper is organized as follows: In the following section, 
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the Emotion Space, Emotion Vocabularies and Variables, the Igbos and Emotions, T2FLS and Sets, 

and the IT2FLS are described. The research methodology is presented, the results and discussion are 

described and the conclusions are drawn. 

1.1| Emotion Space, Emotion Vocabularies and Variables   

The emotion space E  can be considered as a set of all possible emotions and it is represented using 

variables on the Cartesian product space of valence, activation and dominance scales. An emotional 

variableε represents an arbitrary region in the emotion space i.e. ε E . An emotional vocabulary in Eq. 

(1), 

 

is a set of words
v

W and a function
v

eval  that maps words of 
v

W to their corresponding region in the 

emotional space, 
v v

eval : W E . Thus, an emotional vocabulary can be seen as a dictionary for looking 

up the meaning of an emotion word. Words in an emotional vocabulary can be seen as constant 

emotional variables. 

1.2| Igbos and Emotions 

Emotions affect every human including the Igbo’s and the Igbo emotions have become even more 

complex over time hence when the Igbos speak of their emotions, the analysis, interpretation and 

translation to other languages is highly needed. For instance, an Igbo businessman may say “iwe ne enwe 

m” which means “I am angry”. The emotion word in his statement is “iwe” translated as “anger” in 

English could either be with regards to a business situation or a person. Assuming it is a person that is 

an individual who annoyed him, it would not change his disposition about his business hence at almost 

the same time the same businessman could be heard saying “oba go” meaning “it has entered” which 

insinuates happiness of some sought. 

1.3| Type-2 Fuzzy Logic System and Sets 

T2FLS is the generalized standard type-1 in order to accommodate and handle more uncertainties in the 

MF [21]. According to [22] “words mean different things to different people”. T2FLS is based on the 

T2F sets where the MF has multiple values for a crisp input of x, making the need for the creation of a 

3-dimensional MF for all x Ɛ X. A characteristic feature of T2FS is the FOU, which is the union of all 

primary memberships and upper MFs and a lower MFs that are the bounds for the FOU of a T2Fs. 

Uncertainty in relations and uncertainty in values of the variables are majorly the types of uncertainty 

considered in developing systems since the high overlapping of the MFS, defining precise values for 

linguistic variables is not possible [30]. 

Given a T2Fs 𝐴̃, the representation of 𝐴̃ is as shown Eq. (2). 

 

Where µÃ(x, u) is the type-2 fuzzy MF in which 0 ≤ µÃ(x, u) ≤ 1  

1.4| Interval Type-2 Fuzzy Logic System (IT2FLS) 

As a result of the computational complexity of using a general T2FS, IT2Fs is mostly used as a special 

case an express as, when all  µÃ(x, u) = 1, then 𝐴̃ can rightly be described as an IT2FL as seen in Eq. (3) 

and in Fig. 1. The interval type-2 membership function is always equal to 1.  

V = (WV, evalV), (1) 

Ã = {((x, u), μÃ(x, u)) |x ∈ X, u ∈ Jx ∈ [0,1]}. (2) 
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Fig. 1. Typical structure of interval type-2 fuzzy logic system [23]. 

IT2FLS consists of the fuzzifier, rule base, Inference Engine (IE), Type Reducer (TR). Fuzzification 

module maps the crisp input to a T2Fs using Gaussian MF. Inference Engine module evaluates the rules 

in the knowledge base against T2Fs from Fuzzification, to produce another T2Fs. TR uses Karnik-Mendel 

algorithm to reduce an IT2Fs to T1Fs. Defuzzification module maps the fuzzy set produced by TR to a 

crisp output using center of gravity defuzzification method. Fuzzy knowledge base stores rules generated 

from experts’ knowledge used by the IE. 

2| Research Methodology  

The paper employs interval approach where data and fuzzy set parts are considered. 

2.1| Interval Approach (IA) 

The IA is a method for estimating MFs where the subject does not need to be knowledgeable about fuzzy 

sets and it has a simple and unambiguous mapping from data to FoU. Feilong and Mendel [24] used the 

IA to capture the strong points of two previous methods: the Person-MF Approach and the End-point 

Approach. Using the IA, the data collected from different subjects is subjected to probability distribution. 

The mean and standard deviation of the distribution are then mapped into the parameters of a T1 MF 

which are then transformed into T2 MF from which the IT2 MF is derived. The IA is divided into two 

parts namely the Data Part and the Fuzzy Set Part (FSP) as seen in Figs. (2) and (3), respectively. 

2.1.1| The Data Part (DP) 

The DP of the IA consists of data collection, data preprocessing and probability distribution assignment 

parts as shown in Fig. 2. The DP highlights the valence layer and this is repeated for each word in the 

vocabulary. In Fig. 2, the following steps are carried out to achieve an input to the FSP. 

Data Collection. Here, interval survey is performed to collect human intuition about fuzzy predicate. 

Data Preprocessing. Pre-processing for 𝑛 interval data [𝑎(𝑖), 𝑏(𝑖)], i=1,…,n,  are performed consisting  of 3 

stages: 

Bad Data Processing. At this stage, results from the survey that do not fall within the given range are 

removed. If interval end-points given by the respondents satisfy,  

 

 

Ã = ∫x ɛ X ∫u ɛ ∫x
1

(x,u)
, ∫x ɛ [0, 1]. (3) 
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then accept the interval; else reject it. After this stage what remains is 𝑛′ ≤ 𝑛 intervals  

Outlier Processing. At this stage, a Box and Whisker test is used to eliminate outliers. Outliers are 

points which do not satisfy 

 

𝑄𝑎(𝑝) and 𝐼𝑄𝑅𝑎 = 𝑄𝑎(0.75) − 𝑄𝑎(0.25) are the p quartile and inter-quartile range for the left end-points 

and 𝑄𝑏(𝑝) and 𝐼𝑄𝑅𝑏 = 𝑄𝑏(0.75) − 𝑄𝑏(0.25) are the p quartile and inter-quartile range for the right end-

points, respectively. 

Fig. 2. The data part of the interval approach [25]. 

Tolerance-Limit Processing. Here, tolerance-limit test is processed using Eqs. (6) and (7) and if the 

interval passes, it is accepted else, it is rejected. Then the data intervals are reduced to 𝑚′′ ≤ 𝑚′ . 

 

0 ≤ a i ≤ 10
0 ≤ bi ≤ 10
bi ≥ ai

} 
 
  
 
 

∀ i = 1,⋯ , n, (4) 

𝑎(𝑖) ∈ [𝑄𝑎(0.25) − 1.5𝐼𝑄𝑅𝑎,𝑄𝑎(0.75) + 1.5𝐼𝑄𝑅𝑎]

𝑏(𝑖) ∈ [𝑄𝑏(0.25) − 1.5𝐼𝑄𝑅𝑏,𝑄𝑏(0.75) + 1.5𝐼𝑄𝑅𝑏]
. (5) 
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𝑘 is determined by confidence analysis, such that with a 100(1 − 𝛾)% confidence the given limits contain at 

least the proportion1 − 𝛼 measurements. 

After the data preprocessing, we are left with m data intervals such that 1 ≤ 𝑚 ≤ 𝑛. 

Assign Probability Distribution to the Interval Data. Here, a probability distribution is assigned to 

each subject’s data interval. The distribution can be uniform, triangular, normal, etc. but for the purpose 

of this work, the uniform distribution is used. 

Compute Data Statistics for the Interval Data. The data statistics 𝑚𝑙, 𝜎𝑙, 𝑚𝑟𝑎𝑛𝑑𝜎𝑟, which are the sample 

means and standard deviation of the left- and right-end points respectively, are computed based on interval 

data that remains. The last two steps are often merged since they work hand in hand.  

The probability distribution 𝑆𝑖 = (𝑚𝑖, 𝜎𝑖) is assigned to the remaining intervals, then the statistics are 

calculated using the formula for random variables with random distribution stated as 

 

Then the probability distribution, Si, is evaluated in Eq. (10) and forms the input to the fuzzy set part 

 

 

The Si is then input to the next stage, the fuzzy set part. 

2.1.2| The Fuzzy Set Part (FSP) 

The fuzzy set part constructs the interval type-2 fuzzy sets as shown in Fig. 3. It takes the result of Data 

part, i.e. the Si as input from which it creates the IT2Fs. The Layers denote individual fuzzy sets for valence, 

activation and dominance. This framework is repeated for each word in the vocabulary. 

In Fig. 3, the fuzzy set part of IT2FL process is divided into nine (9) steps. Step 1, establishes FS uncertainty 

measures while Step 2 selects the T1FS model. In Step 3, the uncertainty measures for the selected models 

are computed. The uncertainty measures on the symmetrical interior triangle compute the mean and 

Standard Deviation (SD) derived from the mean and SD of the triangular and uniform distributions. In 

step 4, the Si from the data part is recollected. The mean and standard SD from the interval model is 

equated with the corresponding parameters from the previous step. In Step 5, the nature of the FoU is 

established using the parameters of the models associated with each interval to classify whether an interval 

should be mapped to an interior MF, or a left or right shoulder MF. The input interval is mapped to a 

shoulder MF if the parameters show that the distribution is out of the range of the scales. In Step 6, the 

T1Fs is computed with the intervals and the decision is made in the previous step. Since the MFs derived 

in this step are based on statistics and not the raw intervals themselves, another preprocessing stage is 

carried out to delete inadmissible T1FS is with range outside of the limit of the scale of the variable of 

interest. In Step 7, the fuzzy sets derived are the subject-specific T1FSs. The aggregate is taken to compute 

the IT2FSs that contain all the subject-specific T1FS in its FOU. This aggregation can be said to be a type-

2 union of T1FSs, where the embedded T1FSs describe the FOU of IT2FSs. This includes Steps 8 and 9. 

After these steps, the IT2FSs word model is derived. The study analyzes the 30 emotion words collected 

a (l) ∈ [ml − kσl,ml + kσl, ]. (6) 

b(r) ∈ [mr − kσr,mr + kσr, ]. (7) 

m = (a + b) 2⁄  and (8) 

σ = (b − a) √12⁄ . (9) 

Si = (mY
i , σY

i ) ∀  i = 1, . . . , m (10) 
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from a wide range of psychological domains based on their MF values of the three characteristics: 

Valence, Activation, and Dominance. 

Fig. 3. Fuzzy set part of the interval approach [25]. 

 

3| System Design 

The architecture for analyzing emotion words from Igbo using IT2FL presented in Fig. 4. The 

architecture is made up of the Knowledge Engine, the Knowledge Base and the User Interface. The 

Knowledge base further comprises the Database Model, the Interval Surveys and the IT2FL Model. The 

IT2FL model is composed of the Interval Approach Data Part and the Interval Approach Fuzzy Set 

Part. The knowledge engine stores all the variables required for the system, the knowledge base stores 

values for the variables defined in the knowledge engine. The Database stores an organized data to be 

used in the system as collected from the subjects. Interval survey is where the data are collected in a 

range of intervals which defines a subject’s view of each emotion word given with regards to the emotion 

characteristics defined in the knowledge engine. The IT2FL model is used to represent words using 

IT2FSs. The IT2FL comprises Interval Approach which is made up of data and fuzzy set parts. The 

data part processes the data and makes it ready for use in estimating the MF of each emotion 

characteristics in each emotion word. The fuzzy set part evaluates the MF representing each emotion 

characteristics of each word. 

3.1| The Knowledge Engine for Analyzing Igbo Emotion Words 

For the purpose of this paper, the variables used include the emotional characteristics (Valence, 

Activation and Dominance). Valence defines an emotion word on the basis of its positivity or negativity. 

Activation defines an emotion word on the basis of its calmness or excitement. Dominance defines an 

emotion word on the basis of its submissiveness or aggressiveness. The Igbo emotion vocabulary used 

in this work is contained in the knowledge engine. The emotion vocabulary used in this research work 

is the Igbo Emotions vocabulary of 30 words which include: Iwe, Obi Uto, Onuma, Ujo, Ntukwasi Obi, 

Obi Ojo, Onu, Anuri, Egwu, Ihunanya, Mgbagwoju Anya, Mwute, Ikpe Mara, Enyo, Ihere, Iwe Oku, 
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Ekworo, Anyaufu, Anya Ukwu, Obi Ike, Nrugide, Akwa Uta, Kpebisiri Ike, Kenchekwube, Keechiche, 

Mkpako, Nwayoo, Obi Abuo, Obi Mgbawa, Ara. 

Fig. 4. Architecture for analyzing Igbo emotion words using interval IT2FL. 

 

3.2| The Database Model   

The IT2F inference system uses the data as organized in the database. The database schema is created to 

hold the collected data, data statistics and the membership function values, respectively. 

3.3| The Interval Survey  

 An interval survey is carried out using questionnaires which are given to 15 native speakers of Igbo. The 

questionnaire began by giving the users instructions then sequentially providing the words to the users. 

The reason for the interval survey is to collect human intuition about fuzzy predicate which is emotion in 

this case and provision is given for the subject to give an interval within the range 0-10 that defines the 

emotion characteristics. 

3.4| The IT2FL Model to Analyze Igbo Emotion Words 

The IT2FL model for analyzing Igbo emotion words using Interval Approach. The interval approach is 

used because it takes on the strength of the interval endpoints and the person membership function 

approaches. Based on Figs. (2) and (3), the data and fuzzy set parts of Interval Approach for analyzing 

Igbo emotion words using IT2FL are evaluated. 
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Table 1. The Igbo emotion words and the english equivalence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4.1| Interval approach data part for analyzing Igbo emotion words using IT2FL 

Using Fig. 2, in the data collection part, data are collected using the interval surveys from 10 subjects 

who are native speakers of the Igbo Language. The 30 emotion words are randomly ordered and 

presented to the respondents. Each was asked to provide the end-points on an interval for each word 

on the scale of 0-10. Data processing is performed in estimating the MF of each emotion characteristic 

in each emotion word and then calculates the statistics of the data intervals. Validation of the data 

intervals is done starting at ‘n’ intervals at the data preprocessing part. Bad data processing is performed 

on the collected dataset and the intervals that do not satisfy the condition in Eq. (4) is removed. After 

bad processing, outlier processing is carried out on the remaining dataset and the intervals that do not 

satisfy the box and whisker test in Eq. (5) are eliminated. Tolerance –limit processing is performed on 

the remaining intervals and the data intervals are accepted if they satisfy Eqs. (6) and (7) otherwise, they 

are rejected.  

Igbo English 

Iwe Anger, Annoyance 

Obi Uto Happiness, Delighted 

Onuma Wrath, Great Anger 

Ujo Fear, Shock 

Ntukwasi Obi Trust 

Obi Ojo Wickedness, Bitter 

Onu Joy 

Anuri Gladness 

Egwu Great Fear, Dread 

Ihunaya Love 

Mgbagwoju Anya Confused 

Mwute Regret 

Ikpe Mara Guilty 

Enyo Suspicious 

Ihere Shame 

Iwe Oku Hot-Temper 

Ekworo Jealousy 

Anyaufu Envy 

Anya Ukwu Greed, Discontentment 

Obi Ike Confidence, Courage 

Nrugide Persuasion 

AkwaUta Regret, Condemned 

Kpebisiri Ike Determination, Strong-willed 

Kenchekwube Hopeful 

Keechiche Worry 

Mpako Arrogance, Pride 

Nwayoo Gentle, Calm 

Obi Abuo Doubt, Unsteady 

Obi Mgbawa Heartbroken 

Ara Mad, Disturbed 
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The constant ‘k’ is used as estimated by Mendel and Liu [26] and [27] as shown in Table 2 for 10 intervals 

at 0.95 confidence limit since we have an average of ten intervals per characteristic. 

Table 2. Tolerance factor k for a number of collected data (m’), a proportion of the data (1 - α), and a 

confidence level 1- γ. 

  

  

  

 

 

 

 

 

Reasonable data intervals are evaluated for the overlapped data intervals and only reasonable data intervals 

are kept. At this point, the intervals remain the same, i.e. 𝑚 = 𝑚′′ . After the data has been validated, the 

mean and SD of the data intervals are computed in Eqs. (8) and (9) on the assumption that the data intervals 

are uniformly distributed and the probability distribution, Si, computed in Eq. (10) and then becomes an 

input to the fuzzy set part. 

3.4.2| Interval approach fuzzy set part for analyzing Igbo emotion words using 

The Interval Approach Fuzzy Set Part for Analyzing Igbo emotion words using IT2FL is used to evaluate 

the MF based on Fig. 3. It consists of nine steps. Step 1 selects a T1FS and computes the mean and SD of 

the data intervals using symmetrical triangle interior T1FS, left-shoulder T1FS and the right-shoulder T1FS 

only. In Step 2, the mean and standard deviation are calculated to establish FS uncertainty measures using 

Eqs. (11) and (12). 

 

 

 

Obviously, 𝜇𝐴(𝑥) ∫  𝑎𝑀𝐹
𝑏𝑀𝐹𝜇𝐴(𝑥)𝑑𝑥⁄  is the probability distribution of x, where𝑥 ∈ [𝑎𝑀𝐹,  

 
 𝑏𝑀𝐹], then 𝑚𝐴 and 

𝜎𝐴 are the same as the mean and standard deviation used in probability. In Step 3, the Uncertainty Measures 

are computed for T1FS by calculating the mean and SD for symmetric Triangle Interior (TI) and the Left-

Shoulder (LS) and Right-Shoulder (RS) T1MFs using Eqs. (13) – (15), respectively. 

 

 

 

 

m' 1-γ = 0.95 γ = 0.99 

1 – α 1 – α 

0.9 0.95 0.9 0.95 

10 2.839 3.379 3.582 4.265 

15 2.48 2.954 2.945 3.507 

20 2.31 2.752 2.659 3.168 

30 2.14 2.549 2.358 2.841 

50 1.996 2.379 2.162 2.576 

100 1.874 2.233 1.977 2.355 

1000 1.709 2.036 1.736 2.718 

∞ 1.645 1.96 1.645 1.96 

mA =
∫  aMF

bMFxμA(x)dx

∫  aMF
bMFμA(x)dx

 . (11) 

σA = [
∫  aMF

bMF(x − mA)2μA(x)dx

∫  aMF
bMFμA(x)dx

]

1
2⁄

. (12) 

TI: mMF = (aMF + bMF) 2⁄ σMF = (bMF − aMF) 2√6⁄ . (13) 

mMF = (2aMF + bMF) 3⁄ σMF = [
1

6
[(aMF + bMF)2 + 2aMF

2 ] − mMF
2 ]

1
2⁄

.  (14) 

mMF = (2aMF + bMF) 3⁄ σMF = [
1

6
[(a′MF + b′MF)2 + 2a′MF

2 ] − m′MF
2 ]

1
2⁄

(15) 
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Where, 𝑎′𝑀𝐹 = 𝑀 − 𝑏𝑀𝐹; 𝑏′𝑀𝐹 = 𝑀 − 𝑎𝑀𝐹; 𝑚′𝑀𝐹 = 𝑀 − 𝑚𝑀𝐹. In Step 4, we compute for the parameters 

of T1FS models by equating the mean and SD of a T1FS to the mean and SD of the data intervals i.e. 

𝑚𝑀𝐹
𝑖 = 𝑚𝑌

𝑖  and 𝜎𝑀𝐹
𝑖 =𝜎𝑌

𝑖  to have Eqs. (16) – (18). 

 

 

 

Where, 𝑎′ = 𝑀 − 𝑏  and 𝑏′ = 𝑀 − 𝑎 . In Step 5, the nature of the FOU is established by mapping the 

‘m’ data intervals into an IT, LS or a RS FOUs using a scale of [0, 10] if and only if (i), (ii) or (iii). 

 

 

From the mapping, we achieve, 12 TI FOUs, 35 LS FOUs and 23 RS FOUs respectively. In Step 6, 

embedded T1FSs is computed where the actual mapping to a T1FS is applied to the remaining ‘m’ data 

intervals for each word using Eq. (20). 

 

In Step 7, we delete inadmissible T1FSs for all data intervals for any T1FS that do not satisfy (19(i)) – 

(19(iii)) and m reduces to m*. Step 8 computes an IT2FS using the representation theorem for an IT2FS 

𝐴̃ in Eq. (21), 

 

Where, Ai is just the computed 𝑖𝑡ℎ embedded T1FS. In Step 9, the mathematical model for FOU (𝐴̃) is 

computed by first approximating the parameters of UMF (𝐴̃) and the LMF(𝐴̃) for each of the FOU 

models as shown in Eqs. (22) – (27), respectively. 

 

 

 

 

 

 

 

 

 

IT: aMF = (a + b) 2⁄ − √2(b − a) 2⁄ ;bMF = (a + b) 2⁄ + √2(b − a) 2⁄ . (16) 

LS: aMF = (a + b) 2⁄ − (b − a) √6⁄ ;bMF = (a + b) 2⁄ + √6(b − a) 3⁄  (17) 

RS:aMF = M − (a′ + b′) 2⁄ − (b′ − a′) √6⁄ ; bMF = M − (a′ + b′) 2⁄ + √6(b′ − a′) 3⁄ (18) 

aMF
i ≥ 0

bMF
i ≤ 10

bMF
i ≥ aMF

i

(i)
} 
  
  
  
  
  
 

   

aMF
i ≥ M

bMF
i ≤ 10

bMF
i ≥ aMF

i

(ii)
} 
  
  
  
  
  
 

     

aMF
i ≥ 0

bMF
i ≤ M

bMF
i ≥ aMF

i

(iii)
} 
  
  
  
  
  
 

  ∀   i = 1,… ,m                (19) 

Ai = (a i, bi) → (aMF
i , bMF

i ), i = 1,… ,m. (20) 

𝐴̃ =∪
𝑖=1

𝑚∗
𝐴𝑖. (21) 

aMF ≡ min
i=1,…m∗

{aMF
i }

aMF ≡ max
i=1,…m∗

{aMF
i }} 

  
  
  
 

. (21) 

bMF ≡ min
i=1,…m∗

{bMF
i }

bMF ≡ max
i=1,…m∗

{bMF
i }} 

  
  
  
 

. (22) 

CMF
i =

aMF
i + bMF

i

2
 . (23) 

CMF ≡ min
i=1,…m∗

{CMF
i }

CMF ≡ max
i=1,…m∗

{CMF
i }} 

  
  
  
 

. (24) 

p =
bMF(CMF−aMF)+aMF(bMF−CMF)

(CMF−aMF)+(bMF−CMF)
. (25) 

μp =
bMF − p

(bMF − CMF)
 . (26) 
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The mathematical model of the UMF and the LMF are shown in Table 3 for TI, L-S and R-S FOU. 

 

 

 

 

4| Model Experiment 

This paper uses IT2FL to analyze Igbo emotion words. The IT2F sets are computed using the interval 

approach method which comprises data part and fuzzy set part. In order to illustrate the methodology 

proposed in this paper, we conduct some experiments for Igbo emotion words described in this work. 

4.1| The Data Part 

Table 4. shows the data intervals collected from the subjects. Bad data are processed and sample presented 

in Table 5. Outlier processing is performed in Table 5 and the sample result is presented in Table 6. The 

tolerance limit processing in Table 6 is shown in Table 7. Sample result of reasonable interval processing is 

seen in Table 8. The data statistics is computed for all the surviving m data intervals and sample are shown 

in Table 9. 

Table 4. Parts of the data intervals collected from the subjects. 

 

     

Table 5. Sample result of bad data processing. 

 

 

 

 

 

 
 

Upper MF Lower MF 

Triangle (Interior) FOU 
(aMF, 0), (CMF, 1), 

(CMF, 1), (bMF, 0) 

(aMF, 0), (aMF, 0), (p,  
 
μp), 

(bMF, 0), (bMF, 0) 

Left-Shoulder FOU (0, 1), (aMF, 1), (bMF, 0) (0, 1), (aMF, 1), (bMF, 0), (bMF, 0) 

Right-Shoulder FOU (aMF, 0), (bMF, 1), (M, 1) (aMF, 0), (aMF, 0), (bMF, 1), (M, 1) 

 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 

Val 8-10 0-8 3-6 7-9 5-8 5-7 0-5 7-10 6-8 6-9 5-8 8-10 7-10 4-5 4-8 
Act 3-5 1-6 4-7 5-8 7-9 6-7 7-10 0-4 6-10 7-10 7-10 8-10 0-5 9-10 5-9 

Iwe Dom 7-10 2-10 8-10 ||| 7-10 8-10 2-9 6-8 8-10 8-10 8-10 8-10 5-8 8-10 6-9 

 
Val 9-10 5-6 4-7 7-10 5-8 6-8 5-10 1-4 0-5 0-4 3-5 1-3 5-8 4-5 3-8 
Act 9-10 7-9 5-8 5-8 7-10 8-10 1-10 9-10 8-10 5-9 8-10 8-10 6-9 7-10 5-9 

Obi Uto Dom 0-3 2-6 6-9 6-9 8-10 4-6 8-10 3-5 0-5 4-8 5-8 1-3 8-10 3-5 4-10 
 Val 7-9 3-9 8-10 9-10 5-8 4-7 2-7 7-10 9-10 8-10 8-10 8-10 7-10 5-8 4-8 
 Act 0-3 2-6 5-8 4-9 9-10 4-6 7-9 5-8 9-10 6-10 3-5 8-10 0-6 7-10 3-7 
Onuma Dom 8-10 3-9 7-10 8-9 5-8 6-9 2-6 10 9-10 7-10 4-6 8-10 5-8 7-10 5-9 
 Val 0-3 4-10 2-4 1-3 5-8 6-9 8-10 1-3 8-10 5-8 7-9 8-10 8-10 4-6 2-10 
 Act 0-4 2-6 3-5 5-8 7-10 3-6 4-5 0-2 0-5 2-7 0-5 1-3 5-7 7-8 3-9 
Ujo Dom 4-5 3-9 6-8 5-9 7-10 0-4 8-9 0-2 0-5 1-4 3-6 1-3 0-5 8-10 5-10 
 Val 7-10 5-7 1-3 6-8 6-10 0-4 3-10 8-10 0-5 1-5 0-3 1-3 7-10 4-7 1-9 
 Act 2-3 4-8 4-6 6-10 6-8 4-7 1-9 7-9 0-5 3-6 3-5 1-3 7-10 7-8 2-8 
Ntukwasi 
Obi 

Dom 1-3 5-6 8-10 4-8 6-9 4-7 4-9 6-7 0-5 5-8 3-5 1-3 8-10 8-10 5-7 

 Val 5-8 0-10 2-5 6-10 5-10 6-10 2-4 5-8 8-10 8-10 8-10 8-10 6-10 4-5 2-8 
Obi Ojo Act 0-2 2-8 1-4 5-10 6-10 5-7 4-8 7-9 0-2 6-10 3-5 5-6 5-9 7-8 3-6 

 
 Valence Activation Dominance 

1 IWE 15 15 14 

2 OBI UTO 15 15 15 

3 ONUMA 15 15 14 

4 UJO 15 15 15 

5 NTUKWASI OBI 15 15 15 
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Table 6. Sample result of outlier processing. 

 

 

 

 

                       Table 7. Sample result of tolerance-limit processing. 

Table 8. Sample result of reasonable interval processing. 

 

4.2| The Fuzzy Set Part 

In the fuzzy set part, only the symmetrical triangle interior T1FS, left-shoulder T1FS and the right-

shoulder T1FS are used. The mean and SD are the same as in the data part as shown Table 9. The 

uncertainty measure for the chosen T1FS models are computed as is shown in parts in Table 10. The 

nature of FOU for each emotion characteristic for each word is determined as shown in Table 11. The 

embedded T1FSs, aMF  and bMF of each interval are calculated as shown in Table 12 where M=5. The 

LMF and the UMF of the FOU (𝐴̃) for the five experimental intervals are calculated and summarized in 

Table 13

  Valence Activation Dominance 

1 IWE 9 9 2 

2 OBI UTO 12 5 11 

3 ONUMA 5 10 5 

4 UJO 15 13 12 

5 NTUKWASI OBI 15 11 12 

  Valence Activation Dominance 

1 IWE 9 9 2 

2 OBI UTO 12 5 11 

3 ONUMA 5 10 5 

4 UJO 15 13 12 

5 NTUKWASI OBI 15 11 12 

  Valence Activation Dominance 

1 IWE 9 9 2 

2 OBI UTO 12 5 11 

3 ONUMA 5 10 5 

4 UJO 15 13 12 

5 NTUKWASI OBI 15 11 12 
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Table 9. The sample mean and SD computed for all the surviving m data intervals. 

 

Table 10. Sample result of the uncertainty measures for T1FS models. 

 

 

 

 

Table 11. Sample result of the nature of the FOU for each emotion characteristics. 

 

 

 

 

 

 

   Mean Standard Deviation 

   S1 S2 S3 S4 … S15 S1 S2 S3 S4 … S15 

1 Iwe 

Val 0 4 4.5 0 … 6 0 2.309401 0.866025 0 … 1.154701 

Act 4 3.5 5.5 6.5 … 7 0.57735 1.443376 0.866025 0.866025 … 1.154701 

Dom 0 0 0 0 … 0 0 0 0 0 … 0 

       …      …  

       …      …  

2 Obi Uto 

Val 0 5.5 5.5 0 … 5.5 0 0.288675 0.866025 0 … 1.443376 

Act 0 0 6.5 6.5 … 7 0 0 0.866025 0.866025 … 1.154701 

Dom 1.5 4 7.5 7.5 … 0 0.866025 1.154701 0.866025 0.866025 … 0 

       …      …  

       …      …  

3 Onuma 

Val 0 0 0 0 … 6 0 0 0 0 … 1.154701 

Act 1.5 4 6.5 6.5 … 5 0.866025 1.154701 0.866025 1.443376 … 1.154701 

Dom 0 0 0 0 … 7 0 0 0 0 … 1.154701 

       …      …  

       …      …  

4 Ujo 

Val 1.5 7 3 2 … 6 0.866025 1.732051 0.57735 0.57735 … 2.309401 

Act 2 4 4 6.5 … 0 1.154701 1.154701 0.57735 0.866025 … 0 

Dom 4.5 6 7 7 … 0 0.288675 1.732051 0.57735 1.154701 … 0 

       …      …  

       …      …  

5 Ntukwasi Obi 

Val 8.5 6 2 7 … 5 0.866025 0.57735 0.57735 0.57735 … 2.309401 

Act 2.5 6 5 0 … 5 0.288675 1.154701 0.57735 0 … 1.732051 

Dom 2 5.5 0 6 … 6 0.57735 0.288675 0 1.154701 … 0.57735 

 𝐦𝐌𝐅 𝛔𝐌𝐅 

Interior 5 2.041241 

Left 3.333333 3.535887 

Right 3.333333 2.022657 

 
  Interior 

Left-
Shoulder 

Right-
Shoulder 

1 Iwe 

Val  1  

Act  1  

Dom 1   

2 Obi Uto 

Val  1  

Act 1   

Dom   1 

3 Onuma 

Val 1   

Act  1  

Dom 1   
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Table 12. Embedded T1FS for each emotion characteristics. 

 

 

 

 

 

 

 

 

 

Table 13. Computed LMF and the UMF of the FOU (𝐀̃). 

 

 

 

 

 

 

 

 

Table 11. (Continued). 

 
  Interior 

Left-
Shoulder 

Right-
Shoulder 

4 Ujo 

Val 1   

Act 1   

Dom 1   

5 
Ntukwasi 
Obi 

Val 1   

Act 1   

Dom 1   

   amf Bmf 

1 Iwe 

Val 6.183503 8.632993 

Act 7.183503 9.632993 

Dom 5.585786 8.414214 

2 Obi Uto 

Val 6.183503 8.632993 

Act 5.37868 9.62132 

Dom 1.275255 3.724745 

3 Onuma 

Val 4.37868 8.62132 

Act 7.183503 9.632993 

Dom 4.171573 9.828427 

4 Ujo 

Val 7.585786 10.41421 

Act 6.792893 8.207107 

Dom 7.792893 9.207107 

5 
Ntukwasi 
Obi 

Val 7.585786 10.41421 

Act 6.792893 8.207107 

Dom 5.37868 9.62132 

S/No Word  UMF LMF 

1 Iwe 

Val (6,8) (0,5,8) 

Act (7,9) (0,4,9) 

Dom (5,6.5,7,8) (5,6,6.8,8) 

2 Obi Uto 

Val (6,8) (0,3,8) 

Act (5,6.5,7.5,9) (5,6,7,8) 

Dom (0,3,10) (0,6,9,10) 

3 Onma 

Val (2,4.5,6.5,8) (2,5,5.7,7) 

Act (7,9) (0,3,9) 

Dom (2,4,7,9) (2,5,5.5,6) 

4 Ujo 

Val (8,10) (0,3,10) 

Act (7,8) (0,2,8) 

Dom (8,9) (0,2,9) 

5 
Ntukwasi 
Obi 

Val (8,10) (0,3,10) 

Act (7,8) (0,3,8) 

Dom (0,3,10) (0,6,9,10) 



221 

 

U
si

n
g

 i
n

te
rv

a
l 

ty
p

e
-2

 f
u

z
z
y
 l

o
g

ic
 t

o
 a

n
a
ly

z
e
 I

g
b

o
 e

m
o

ti
o

n
 w

o
rd

s
 

5| Result and Discussion 

5.1| The Fuzzy Set Part 

The IT2FL model used to analyze the Igbo emotion words are simulated using Matlab, Microsoft excel 

and Netbeans. The data as collected are input into a spreadsheet, preprocessed as discussed in the paper. 

Then, the model is run on the data yielding the MFs and the FOUs of each of the first 5 emotion words. 

Parts of the results of simulation for dimensions Valence, Activation and Dominance are shown in Figs. 

(4)-(16). 

 

Fig. 4. The FOU of Iwe (Anger) for dimensions valence, activation and dominance. 

 

 

Fig. 5. The FOU of Obi Uto (Happiness) for dimensions valence, activation and dominance. 

 

 

                Fig. 6. The FOU of Ihere (Shame) for dimensions valence, activation and dominance. 
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Fig. 7. The FOU of Akwa Uta (Remorse) for dimensions valence, activation and dominance. 

 

 

 

            Fig. 8. The FOU of Ara (Mad) for dimensions valence, activation and dominance. 

 

 

               Fig. 9. The FOU of Onuma (Wrath) for dimensions valence, activation and dominance. 

 

 

            Fig. 10. The FOU of Ujo (Fear) for dimensions valence, activation and dominance. 
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Fig. 11. The FOU of Ntukwasi (Trust) for dimensions valence, activation and dominance. 

 

 

Fig. 12. The FOU of Ojo (Wicked) for dimensions valence, activation and dominance. 

 

 

Fig. 13. The FOU of Onu (Joy) for dimensions valence, activation and dominance. 

 

 

                 Fig. 14. The FOU of Anuri (Glad) for dimensions valence, activation and dominance. 
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Fig. 15. The FOU of Egwu (Dread) for dimensions valence, activation and dominance. 

 

 

               Fig. 16. The FOU of Ihunaya (Love) for dimensions valence, activation and dominance. 

 

5.2| Discussion 

Figs. (4) – (16) show parts of the MFs that were calculated from the survey data. These Figures indicate 

3 general tendencies of graph: the MF could be either steeper and more peripheral if the emotion words 

are in accordance with their real meaning, or less steep and more central if the emotion words have 

ambiguous and undetermined meaning, or shifted to the opposite side of at least one of the scales if the 

emotion words do not conform with the real meaning. The valence dimension for the word “Iwe 

(Anger)” is not so broad, indicating a value a bit low. The activation dimension indicates a high value 

while the dominance dimension is narrow and has a small footprint of uncertainty. This means the word 

“Iwe (Anger)” carries a meaning that is well determined by the valence and dominance dimensions but 

is not well determined by the activation dimension. The word “Obi Uto (Happiness)” has a high value 

in its valence dimension, low value in its activation dimension and high value in its dominance 

dimension. This implies that the meaning of the word “Obi Uto (Happiness)” is well determined by its 

activation dimension. For the word “Ihere (Shame)”, the valence dimension has a high value. The 

activation and dominance dimensions have low values. This indicates that the meaning of the word 

“Ihere (Shame)” is well determined by its activation and dominance dimensions and not the valence 

dimension. The word “AkwaUta (Remorse)” has a high value in its valence dimension, a low value in 

its activation dimension and a high value in its dominance dimension. This indicates that the meaning 

of the word “AkwaUta (Remorse)” is well determined by all the three dimensions. For the word “Ara 

(Mad)”, the valence dimension has a low value while the activation dimension has a high value. Its 

dominance dimension though not so broad has a small footprint of uncertainty. This shows that the 

meaning of the word “Ara (Mad)” is well determined by all the three characteristics. 

5| Conclusion 

This paper involves the implementation of the IT2FL model for analyzing thirty (30) Igbo emotion 

words. Interval survey is conducted using Igbo native speakers to collect human intuition about fuzzy 

predicate which is emotion. Using an interval approach, user data are associated with each emotion word 

with intervals on the three scales of emotional characteristics-valence, activation, and dominance which 

are collected and used to estimate IT2F MFs for each scale. Results indicate that the study is able to 

demonstrate that the use of the proposed system will be of immense benefit to every aspect of Natural 
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Language Processing (NLP) and affective computing and that the IT2FL model for words is more suitable 

for any purpose in which emotion words may be computed. This is because of the interval approach 

method used to analyze the words to yield IT2FSs which captures most uncertainty that are contained in 

an emotion word. Also, the study will help the users in selecting specific Igbo emotion words for easy 

communication and understanding.  

In the future, more emotion words can be added to the system and IT2FL tool can be employed in the 

translation of Igbo emotion words in English language. 
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Abstract 

 

1 | Introduction  

Inventory models deal with decisions that minimize the total average cost or maximize the total 

average profit. In that way to construct a real life mathematical inventory model on based on various 

assumptions and notations and approximations. Multi-item is also an important factor in the 

inventory control system. The basic well known Economic Order Quantity (EOQ) model was first 

introduced by Harris in 1913; Abou-el-ata and Kotb studied a multi-item EOQ inventory model with 

varying holding costs under two restrictions with a geometric programming approach [1]. Chen [7] 

presented an optimal determination of quality level, selling quantity and purchasing price for 

intermediate firms. Liang and Zhou [11] discussted two warehouse inventory model for deteriorating 

items and stock dependent demand under conditionally permissible delay in payment.  
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Das et al. [12] developed a multi-item inventory model with quantity dependent inventory costs and 

demand-dependent unit cost under imprecise objectives and restrictions with a geometric programming 

approach. Das and Islam [13] considered a multi-objective two echelon supply chain inventory model 

with customer demand dependent purchase cost and production rate dependent production cost. Shaikh 

et al. [30] discussed an inventory model for deteriorating items with preservation facility of ramp type 

demand and trade credit. 

The concept of fuzzy set theory was first introduced by Zadeh [27]. Afterward, Zimmermann [28] 

applied the fuzzy set theory concept with some useful membership functions to solve the linear 

programming problem with some objective functions. Bit [2] applied fuzzy programming with 

hyperbolic membership functions for multi objective capacitated transportation problems. Bortolan and 

Degani [4] discussed a review of some methods for ranking fuzzy subsets. Maiti [19] developed a fuzzy 

inventory model with two warehouses under possibility measure in fuzzy goals. Mandal et al. [22] 

presented a multi-objective fuzzy inventory model with three constraints with a geometric programming 

approach. Shaikh et al. [26] developed a fuzzy inventory model for a deteriorating Item with variable 

demand, permissible delay in payments and partial backlogging with Shortage Following Inventory (SFI) 

policy. Garai et al. [29] discussed multi-objective inventory model with both stock-dependent demand 

rate and holding cost rate under fuzzy random environment. 

In the global market system lead time is an important matter. Ben-Daya and Rauf [3] considered an 

inventory model involving lead-time as a decision variable. Chuang et al. [8] presented a note on periodic 

review inventory model with controllable setup cost and lead time. Hariga and Ben-Daya [14] discussed 

some stochastic inventory models with deterministic variable lead time. Ouyang et al. [20] studied 

mixture inventory models with backorders and lost sales for variable lead time. Ouyang and Wu [21] 

established a min-max distribution free procedure for mixed inventory models with variable lead time. 

Sarkar et al. [24] developed an integrated inventory model with variable lead time and defective units 

and delay in payments. Sarkar et al. [25] studied quality improvement and backorder price discount under 

controllable lead time in an inventory model. 

Geometric Programming (GP) is a powerful optimization technique developed to solve a class of non-

linear optimization programming problems especially found in engineering design and manufacturing. 

Multi objective geometric programming techniques are also interesting in the EOQ model. GP was 

introduced by Duffin et al. in 1966 [10] and published a famous book in 1967 [9]. Beightler et al. [5] 

applied GP. Biswal [6] considered fuzzy programming techniques to solve multi-objective geometric 

programming problems. Islam [16] discussed multi-objective geometric-programming problem and its 

application. Mandal et al. [22] developed a multi-objective fuzzy inventory model with three constraints 

with a geometric programming approach. Mandal et al. [23] discussed an inventory model of 

deteriorating items with a constraint with a geometric Programming approach. Islam [17] studied a 

multi-objective marketing planning inventory model with a geometric programming approach. Kotb et 

al. [18] presented a multi-item EOQ model with both demand dependent on unit cost and varying lead 

time via geometric programming. 

In this paper, we have developed an inventory model of multi-item with space constraint in a fuzzy 

environment. Here we considered the constant demand rate and production cost is dependent on the 

demand rate. Set-up- cost is dependent on average inventory level as well as demand. Lead time crashing 

cost is considered the continuous function of leading time. Due to uncertainty all cost parameters are 

taken as generalized trapezoidal fuzzy numbers. The proposal has been solved by various techniques 

like GP approach, FPTHMF, FNLP, and FAGP. Numerical example is given to illustrate the model. 

Finally sensitivity analysis and graphical representation have been shown to test the parameters of the 

model.  
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2| Mathematical Model 

2.1| Notations 

ℎ𝑖: Holding cost per unit per unit time for ith item. 

𝑇𝑖:  The length of cycle time for 𝑖thitem, 𝑇𝑖 > 0. 

𝐷𝑖 ∶ Demand rate per unit time for the ith item. 

𝐿𝑖 ∶ Rate of leading time for the ith item. 

SS: Safety stock. 

𝑘: Safety factor. 

𝐼𝑖(𝑡): Inventory level of the ith item at time t. 

𝐶𝑝
𝑖  : Unit production cost of ith item. 

𝑆𝑐
𝑖(𝑄𝑖, 𝐷𝑖): Set up cost for ith item. 

𝑅𝑖( 𝐿𝑖): Lead time crashing cost for the ith item. 

𝑄𝑖: The order quantity for the duration of a cycle of length 𝑇𝑖for ith item. 

𝑇𝐴𝐶𝑖(𝐷𝑖, 𝑄𝑖, 𝐿𝑖): Total average profit per unit for the ith item. 

𝑤𝑖: Storage space per unit time for the ith item. 

𝑊: Total area of space. 

𝑤𝑖̃: Fuzzy storage space per unit time for the ith item. 

ℎ𝑖̃: Fuzzy holding cost per unit per unit time for the ith item. 

𝑇𝐴𝐶𝑖̃(𝐷𝑖, 𝑄𝑖, 𝐿𝑖): Fuzzy total average cost per unit for the ith item. 

𝑤𝑖̂: Defuzzyfication of the fuzzy number 𝑤𝑖̃. 

ℎ𝑖̂: Defuzzyfication of the fuzzy number ℎ𝑖̃. 

𝑇𝐴𝐶𝑖̂(𝐷𝑖, 𝑄𝑖, 𝐿𝑖): Defuzzyfication of the fuzzy number 𝑇𝐴𝐶𝑖̃(𝐷𝑖, 𝑄𝑖, 𝐿𝑖). 

2.2| Assumptions 

 Multi-item is considered. 

 The replenishment occurs instantaneously at infinite rate. 

 The lead time is considered. 

 Shortages are not allowed. 

 Production cost is inversely related to the demand. Here considered 𝐶𝑝
𝑖 ( 𝐷𝑖) = 𝛼𝑖𝐷𝑖

−𝛽𝑖, where 𝛼𝑖 > 0 and 𝛽𝑖 > 1 are 

constant real numbers. 
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 The set up cost is dependent on the demand as well as average inventory level. Here considered 𝑆𝑐
𝑖(𝑄𝑖, 𝐷𝑖) =

𝛾𝑖 (
𝑄𝑖

2
)
𝛿𝑖
𝐷𝑖

𝜎𝑖  where 0 < 𝛾𝑖, 0 < 𝛿𝑖 ≪ 1 and 0 < 𝜎𝑖 ≪ 1 are constant real numbers. 

 Lead time crashing cost is dependent on the lead time by a function of the form  𝑅𝑖( 𝐿𝑖) = 𝜌𝑖𝐿𝑖
−𝜏𝑖, where 𝜌𝑖 > 0 

and 0 < 𝜏𝑖 ≤ 0.5 are constant real numbers. 

𝐿𝑖. 

 Deterioration is not allowed. 

2.3| Formulation of the Model 

The inventory level for ith item is illustrated in Fig. 1. During the period [0, 𝑇𝑖] the inventory level reduces 

due to demand rate. In this time period, the governing differential equation is 

 

With boundary condition, 𝐼𝑖(0) = 𝑄
𝑖
, 𝐼𝑖(𝑇𝑖) = 0. 

Solving Eq. (1) we have, 

 

 

 

Fig. 1. Inventory level for the ith item. 

Now calculating various averages cost for ith item,  

Average production cost (𝑃𝐶𝑖) =
𝑄𝑖𝐶𝑝

𝑖 ( 𝐷𝑖)

𝑇𝑖
 = 𝛼𝑖𝐷𝑖

(1−𝛽𝑖); 

Average holding cost(𝐻𝐶𝑖) =
1

𝑇𝑖
∫ ℎ𝑖𝐼𝑖(𝑡)𝑑𝑡

𝑇𝑖

0
+ ℎ𝑖𝑘𝜔√𝐿𝑖  = ℎ𝑖 (

𝑄𝑖

2
+ 𝑘𝜔√𝐿𝑖) ; 

Average set-up-cost (𝑆𝐶𝑖) =  
1

𝑇𝑖
[𝛾𝑖 (

𝑄𝑖

2
)

𝛿𝑖
𝐷𝑖

𝜎𝑖  ] =
𝛾𝑖𝑄𝑖

𝛿𝑖−1𝐷
𝑖

𝜎𝑖+1

2𝛿𝑖
; 

Average lead time crashing cost (𝐶𝐶𝑖) =
𝜌𝑖𝐿𝑖

−𝜏𝑖  

𝑇𝑖
=

 𝐷𝑖𝜌𝑖𝐿𝑖
−𝜏𝑖  

𝑄𝑖
. 

Total average cost for ith item is 

dIi(t)

dt
= −Di,0 ≤ t ≤ Ti. (1) 

Ii(t) = Q i − Dit,  0 ≤ t ≤ Ti  .                                                                             (2) 

Ti =
Qi

Di
 .                                                                                                                 (3) 



231 

 

M
u

lt
i 
it

e
m

 i
n

ve
n

to
ry

 m
o

d
e
l i

n
c
lu

d
e
 le

a
d

 t
im

e
 w

it
h

 d
e
m

a
n

d
 d

e
p

e
n

d
e
n

t 
p

ro
d

u
c
ti

o
n

 c
o

st
 a

n
d

 s
e
t-

u
p

-c
o

st
 i
n

 f
u

z
z
y
 e

n
vi

ro
n

m
e
n

t
 

 A Multi-Objective Inventory Model (MOIM) can be written as: 

 

2.4| Fuzzy Model 

Due to uncertainty, we consider all the parameters (𝛼𝑖, 𝛽𝑖, ℎ𝑖, 𝜌𝑖, 𝛾𝑖, 𝛿𝑖, 𝜎𝑖, 𝜏𝑖)of the model and storage space 

𝑤𝑖 as Generalized Trapezoidal Fuzzy Number (GTrFN)(𝛼𝑖̃, 𝛽𝑖̃, ℎ𝑖̃, 𝜌𝑖̃, 𝛾𝑖̃, 𝛿𝑖̃, 𝜎𝑖 ,̃ 𝑤𝑖̃, 𝜏𝑖̃). Here  

𝛼𝑖̃ = (𝛼𝑖
1, 𝛼𝑖

2, 𝛼𝑖
3, 𝛼𝑖

4; 𝜑𝛼𝑖
), 0 < 𝜑𝛼𝑖

≤ 1; ℎ𝑖̃ = (ℎ𝑖
1
, ℎ𝑖

2
, ℎ𝑖

3
, ℎ𝑖

4
; 𝜑ℎ𝑖

), 0 < 𝜑ℎ𝑖
≤ 1;   

𝛽𝑖̃ = (𝛽𝑖
1, 𝛽𝑖

2, 𝛽𝑖
3, 𝛽𝑖

4; 𝜑𝛽𝑖
), 0 < 𝜑𝛽𝑖

≤ 1; 𝜌𝑖̃ = (𝜌𝑖
1, 𝜌𝑖

1, 𝜌𝑖
1, 𝜌𝑖

1; 𝜑𝜌𝑖
), 0 < 𝜑𝜌𝑖

≤ 1;  

𝛾𝑖̃ = (𝛾𝑖
1, 𝛾𝑖

2, 𝛾𝑖
3, 𝛾𝑖

4; 𝜑𝛾𝑖
), 0 < 𝜑𝛾𝑖

≤ 1; 𝑤𝑖̃ = (𝑤𝑖
1, 𝑤𝑖

2, 𝑤𝑖
3, 𝑤𝑖

4; 𝜑𝑤𝑖
), 0 < 𝜑𝑤𝑖

≤ 1;  

𝛿𝑖̃ = (𝛿𝑖
1, 𝛿𝑖

2, 𝛿𝑖
3, 𝛿𝑖

4; 𝜑𝛿𝑖
), 0 < 𝜑𝛿𝑖

≤ 1; 𝜎𝑖̃ = (𝜎𝑖
1, 𝜎𝑖

2, 𝜎𝑖
3, 𝜎𝑖

4; 𝜑𝜎𝑖
), 0 < 𝜑𝜎𝑖

≤ 1;  

𝜏𝑖̃ = (𝜏𝑖
1, 𝜏𝑖

2, 𝜏𝑖
3, 𝜏𝑖

4; 𝜑𝜏𝑖
), 0 < 𝜑𝜏𝑖

≤ 1; ( 𝑖 = 1,2, ……… , 𝑛). 

 Then the above inventory Model (5) becomes the fuzzy inventory model as 

 

𝜆 −Integer method is used to defuzzify the fuzzy number. In this method the defuzzify value of the fuzzy 

number  𝐴̃ = (𝑎, 𝑏, 𝑐, 𝑑; 𝜑) is 𝜑 (
𝑎+𝑏+𝑐+𝑑

4
). So using the defuzzified values (𝛼𝑖̂, 𝛽𝑖̂, ℎ𝑖̂, 𝜌𝑖̂, 𝛾𝑖̂, 𝛿𝑖̂, 𝜎𝑖̂, 𝑤𝑖̂, 𝜏𝑖̂) of the 

GTrFN (𝛼𝑖̃, 𝛽𝑖̃, ℎ𝑖̃, 𝜌𝑖̃, 𝛾𝑖̃, 𝛿𝑖̃, 𝜎𝑖 ,̃ 𝑤𝑖̃, 𝜏𝑖̃), the above fuzzy inventory Model (6) reduces to 

TACi(Di, Qi, Li) = (PCi + HCi + SCi + CCi) = αiDi
(1−βi) + hi (

Qi

2
+ kω√Li) +

γiQi
δi−1D

i

σi+1

2δi
+

 DiρiLi
−τi  

Qi
.        

(4) 

Min {TAC1, TAC2, TAC3, …………… ,TACn}, 

 TACi(Di, Qi, Li) = αiDi
(1−βi) + hi (

Qi

2
+ kω√Li) +

γiQi
δi−1D

i

σi+1

2δi
+

 DiρiLi
−τi  

Qi
, 

Subject to 

 ∑ wiQ i ≤
n
i=1  W, Di > 0,Q i > 0, Li > 0, for i = 1,2,……… . . n.            

(5) 

Min     {TAC1̃, TAC2̃, TAC3̃, ………………… . , TACñ}, 

Subject to 

∑ w ĩQ i ≤
n
i=1  W, for i = 1,2, ……… . . n.          

Where 

TACi(Di, Qi, Li)̃ = αĩDi
(1−βĩ) + hĩ (

Qi

2
+ kω√Li) +

γĩQi
δĩ−1Di

σĩ+1

2δĩ
+

DiρĩLi
−τĩ  

Qi
. 

(6) 
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3| Fuzzy Programming Techniques to Solve MOIM  

Solve the MOIM as a single objective NLP using only one objective at a time and ignoring the others. 

So we get the ideal solutions. Using the ideal solutions the pay-off matrix as follows: 

 

 

 

 

 

 

 

 

 

 

3.1|Fuzzy Programming Technique Using Hyperbolic Membership Function 

(FPTHMF) 

Now fuzzy non-linear hyperbolic membership functions 𝜇𝑇𝐴𝐶𝑘
𝐻 (𝑇𝐴𝐶𝑘(𝐷𝑘, 𝑄𝑘, 𝐿𝑘))  for the kth  objective 

functions  𝑇𝐴𝐶𝑘(𝐷𝑘, 𝑄𝑘, 𝐿𝑘)  respectively for 𝑘 = 1,2,… . , 𝑛 are defined as follows:                   

 

 

 

Where 𝛼𝑘 is a parameter, 𝜎𝑘 =
3

(𝑈𝑘−𝐿𝑘)
2
⁄
=

6

𝑈𝑘−𝐿𝑘
. 

Min {TAC1̂, TAC2̂, TAC3̂, ………………………… . , TACn̂}, 

Subject to 

∑ w îQ i ≤
n
i=1  W,  

Where 

TACi(Di, Qi, Li)̂ = αîDi
(1−βî) + hî (

Qi

2
+ kω√Li) +

γîQi
δî−1Di

σî+1

2δî
+

DiρîLi
−τî  

Qi
 , 

Di > 0,Q i > 0,Li > 0, for i = 1,2,……… . . n.      

(7) 

                                   TAC1(D1, Q 1, L1)       TAC2(D2, Q 2, L2)…. ……….TACn(Dn, Qn, Ln)  

     (D1
1, Q 1

1, L1
1 )      TAC1

∗(D1
1, Q 1

1, L1
1 )     TAC2(D1

1, Q 1
1, L1

1 )………..….TACn(D1
1, Q 1

1, L1
1 )  

      

(D2
2, Q 2

2, L2
2 )      TAC1(D2

2, Q 2
2, L2

2 )       TAC2
∗(D2

2, Q 2
2, L2

2 ) . ………  TACn(D2
2, Q 2

2, L2
2 ) 

                                                ……         ….. …..            …………..       ……….. 

                                                  ……       ….. …..            …………..       ……….. 

(Dn
n, Qn

n, Ln
n )     TAC1(Dn

n, Qn
n, Ln

n )       TAC2(Dn
n, Qn

n, Ln
n ) ……….   TACn

∗(Dn
n, Qn

n, Ln
n ),

  

Let Uk = max {TACk(Di
i, Q i

i, Li
i ), i = 1,2, … . , n} for k = 1,2,… . , n and  

Lk = TACk
∗(Dk

k, Qk
k, Lk

k )for k = 1,2, … . , n. 

Hence Uk, Lk are identified, Lk ≤ TAPk(Di
i, Q i

i, Li
i ) ≤ Uk, for i = 1,2, … . , n ; k =

1,2, … . , n. 

(8) 

μTACk
H (TACk(Dk,Qk, Lk))

=
1

2
tanh

( 
  
  
  
 

( 
  
  
 
Uk + Lk

2
− TACk(Dk,Qk, Lk)) 

  
  
 

σk) 
  
  
  
 

+
1

2
 . 
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In this technique the problem is defined as follows:   

 

 

 

 

 

After simplification the above problem can be written as                                                

 

 

 

 

 

Now the above problem can be freely solved by suitable mathematical programming algorithm and then 

we shall get the appropiet solution of the MOIM. 

3.2| Fuzzy Non-Linear Programming (FNLP) Technique based on Max-Min 

In this technique fuzzy membership function 𝜇𝑇𝐴𝐶𝑘(𝑇𝐴𝐶𝑘(𝑄𝑘, 𝐷𝑘))  for the kth objective function  

𝑇𝐴𝐶𝑘(𝐷𝑘, 𝑄𝑘, 𝐿𝑘)  respectively for 𝑘 = 1,2, … . , 𝑛 are defined as follows: 

 

 

 

 

 

In this technique the problem is defined as follows: 

 

 

 

 

 

Max λ,   

 Subject to  

1

2
tanh ( 

  
 
 

(
Uk+Lk

2
− TACk(Dk, Qk, Lk)) σk) 

  
 
 

+
1

2
≥ λ , 

 ∑ w îQ i ≤
n
i=1  W, λ ≥ 0,   Dk >,Qk > 0, Lk > 0, for k = 1,2,……… . . n. 

Max y ,  

Subject to 

y + σkTACk(Dk, Qk, Lk) ≤
Uk+Lk

2
σk,   

∑ wîQi ≤n
i=1  W, y ≥ 0, Dk >, Qk > 0, Lk > 0 for k = 1,2, … … … . . n.   

  

μTACk(TACk(Dk,Qk, Lk))

=

{ 
  
  
  
  
  
 

1                                  for TACk(Dk, Qk, Lk) < Lk

Uk − TACk(Dk,Qk, Lk)

Uk − Lk
    for Lk ≤ TACk(Dk,Qk, Lk) ≤ Uk

0                                    for  TACk(Dk,Qk, Lk) > Uk

 

for k = 1,2,… . , n. 

Max α′,   

Subject to 

TACk(Dk,Qk, Lk) + α′(Uk − Lk) ≤ Uk   ,      for k = 1,2,… . , n,                                                      

∑ w îQ i ≤
n
i=1  W, 0 ≤ α′ ≤ 1,  Dk >,Qk > 0,Lk > 0. 
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Now the above problem can be freely solved by suitable mathematical programming algorithm and then 

we shall get the required solution of the MOIM. 

3.3| Fuzzy Additive Goal Programming (FAGP) Technique Based on Additive 

Operator 

Using the above membership function, fuzzy non-linear programming problem is formulated as 

Now the above problem can be solved by suitable mathematical programming algorithm and then we 

shall get the solution of the MOIM. 

4| Geometric Programming Technique 

 Let us consider a Multi Objective Geometric Programming (MOGP) problem is as follows 

Where 𝑐𝑟𝑘, 𝑐𝑠0𝑘(> 0),𝑟𝑘𝑗 and 𝑠0𝑘𝑗 (𝑗 = 1,2, … . , 𝑚; 𝑟 = 0,1,2, … . , 𝑝;  𝑘 = 1,2, . . … . 𝑙𝑟 ;  𝑠 =

1,2,3, … …… . . , 𝑛)are all real numbers. 𝑇𝑠0 is the number of terms in the 𝑠𝑡ℎ objective function and 𝑙𝑟 is 

the number of terms in the 𝑟𝑡ℎ constraint. 

Now introducing the weights 𝑤𝑖 (𝑖 = 1,2,3, ……… . . , 𝑛), the above MOGP converted into the single 

objective geometric programming problem as following 

Primal Problem.  

  

 

 

 

 

 

Max ∑
Uk−TACk(Dk,Qk,Lk)

Uk−Lk
n
k=1  ,   

Subject to 

 Uk − TACk(Dk,Qk, Lk) ≤ Uk − Lk, 

∑ w îQ i ≤
n
i=1  W,  Dk >,Qk > 0, Lk > 0 for k = 1,2,… . , n. 

Minimize gs0(t) = ∑ cs0k∏ tj
s0kjm

j=1
 Ts0
k=1 , s = 1,2,3,……… . . , n,                                                               

Subject to 

gr(t) = ∑ crk∏ tj
rkjm

j=1
 lr
k=1 ≤ 1 , r = 1,2,3,……… . . , p, 

tj > 0, j = 1,2,… ,m.   

Minimize g(t) = ∑ ws∑ cs0k∏ tj
s0kjm

j=1
 Ts0
k=1

n
s=1 , s = 1,2,3,……… . . , n, 

i.e. = ∑ ∑ wscs0k∏ tj
s0kjm

j=1
 Ts0
k=1

n
s=1 , 

Subject to 

gr(t) = ∑ crk∏ tj
rkjm

j=1
 lr
k=1 ≤ 1 , r = 1,2,3,……… . . , p, 

tj > 0, j = 1,2,… ,m,   

∑ wi
 n
i=1 = 1,wi > 0, i = 1,2,3,……… . . , n.    

(9) 
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Let 𝑇 be the total numbers of terms ( including constraints), number of variables is 𝑚. Then the degree of 

the difficulty (DD) is 𝑇 − (𝑚 + 1). 

Dual Program. 

The dual programming of Eq. (9) is given as follows: 

 

 

 

 

 

 

 

Now here three cases may arises 

Case I. 𝑇0  =  𝑚 + 1, (i.e. DD=0). So DP presents a system of linear equations for the dual variables. So 

we have a unique solution vector of dual variables.    

Case II. 𝑇0  >  𝑚 + 1,  So a system of linear equations is presented for the dual variables, where the number 

of linear equations is less than the number of dual variables. So it is concluded that dual variables vector 

have many solutions.  

Case III. 𝑇0  <  𝑚 + 1,  so a system of linear equations is presented for the dual variables, where the number 

of linear equations is greater than the number of dual variables. It is seen that generally no solution vector 

exists for the dual variables here. 

4.1| Solution Procedure of My Proposed Problem 

Primal Problem. 

  Maximize v(θ) =

∏ ∏ (
wscs0k

θ0sk
)
θ0sk

∏ ∏ (
crk

θrk
)
θrk

lr
k=1

p

r=1
Tso
k=1

n
s=1 (∑ θrk

 lr
k=1 )

∑ θrk
 lr
k=1

,                                                              

Subject to 

∑ ∑ θ0sk
 Ts0
k=1

n
s=1 = 1,  (Normality condition)                                           

∑ ∑ rkjθrk +∑ ∑ s0kjθ0sk
 Ts0
k=1

n
s=1 = 0

lr
k=1

p

r=1 , ( j = 1,2,… . ,m)  

(Orthogonality conditions) 

θ0sk, θrk > 0, (r = 0,1,2,… . , p;  k = 1,2, . . … . lr ;  s = 1,2,3,……… . . , n). 
(Positivity conditions) 

Minimize TAC(D, Q, L)

= ∑ wi
′

n

i=1

(αîDi
(1−βî) + hî (

Qi

2
+ kω√Li) +

γîQi
δî−1Di

σî+1

2δî

+ DiρîLi
−τîQi

−1) , 

Subject to 

∑
wî

W
Qi ≤ 1n

i=1 ,   

∑ wi
′ n

i=1 = 1, wi
′ > 0, i = 1,2,3, … … … . . , n .    

(10) 
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Dual Program. 

The dual programming of Eq. (10) is given as follows: 

 

 

 

 

 

 

 

 

 

 

 

Solving the above linear equations we have 

𝜃𝑖1 =
𝜎𝑖̂+1

𝛽𝑖̂−1
𝑦𝑖 +

1

𝛽𝑖̂−1
𝑥𝑖, 𝜃𝑖2 = 1 − {(1 + 2𝜏𝑖̂) +

1

𝛽𝑖̂−1
𝑥𝑖} −

𝜎𝑖̂+𝛽𝑖̂

𝛽𝑖̂−1
𝑦𝑖, 𝜃𝑖3 = 2𝜏𝑖̂𝑥𝑖, 𝜃𝑖4 = 𝑦𝑖, 𝜃𝑖5 = 𝑥𝑖, 

𝜃𝑖1
′ = 1 − (2𝜏𝑖̂ +

1

𝛽𝑖̂ − 1
) 𝑥𝑖 − (

𝜎𝑖̂ + 𝛽𝑖̂

𝛽𝑖̂ − 1
+ 𝛿𝑖̂ − 1) 𝑦𝑖 . 

Putting the above values in Eq. (11) we have  

 

 

 

 

 

 

 

Now using the primal-dual relation we have 

Maximize v(θ)

=∏(
wi

′αî
θi1

)

θi1

( 
  
 
 
wi

′h î
2θi2

) 
  
 
 θi2

(
wi

′kω

θi3
)
θi3

(
wi

′γî

2δîθi4
)

θi4

(
wi

′ρî
θi5

)

θi5

(
w î

Wθi1
′ )

θi1
′n

i=1

( 
  
  
 

∑θi1
′

 n

i=1

) 
  
  
 ∑ θi1

′ n
i=1

, 

Subject to 

θi1 + θi2 + θi3 + θi4 + θi5 = 1,            

(1 − βî)θi1 + (σî + 1)θi4 + θi5 = 0, 

θi2 + (δî − 1)θi4 − θi5 + θi1
′ = 0, 

θi3
2
− τîθi5 = 0 , 

∑wi
′

 n

i=1

= 1,wi
′ > 0, 

θi1, θi2, θi3, θi4, θi5, θi1
′ ≥ 0 for i = 1,2,3, ……… . . , n.      

(11) 

Maximize v(x, y)

=∏( 
  
  
 
wi

′(βî − 1)αî

(σî + 1)yi + xi
) 
  
  
 σî+1
βî−1

yi+
1

βî−1
xin

i=1 ( 
  
  
  
  
  
  
 
 

wi
′h î

2 {1 − {(1 + 2τî) +
1

βî − 1
xi} −

σî + βî

βî − 1
yi}) 

  
  
  
  
  
  
 
 1−{(1+2τî)+

1

βî−1
xi}−

σî+βî

βî−1
yi

 

      (
wi
′kω

2τîxi
)
2τîxi

(
wi
′γî

2δîyi
)
yi
(
wi
′ρî

xi
)
xi
(
wî

Wzi
)
zi
(∑ zi

 n
i=1 )∑ zi

 n
i=1  , 

∑wi
′

 n

i=1

= 1, 

Where zi = 1 − (2τî +
1

βî−1
) xi − (

σî+βî

βî−1
+ δî − 1) yi, 

xi, yi > 0,wi
′ > 0 and x = (x1, x2, x3, … . . , xn), y = (y1, y2, y3, ……… , yn). 
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TAC ∗(D,Q, L) = n(v ∗(x, y))
1/n

; 

wi
′αîDi

∗(1−βî) = θi1
∗(v ∗(x, y))

1/n
; 

wi
′hîQi

∗

2
= θi2

∗(v ∗(x, y))
1/n

; 

wi′hikωLi∗=θi3∗v∗x,y1/n, for  i=1,2,3,………..,n.            

5| Numerical Example 

Here we consider an inventory system which consists of two items with following parameter values in 

proper units. Total storage area 𝑊 = 500 𝑆𝑞. 𝑓𝑡. and 𝑘 = 3, 𝜔 = 5, 𝑤1
′ = 0.5, 𝑤1

′ = 0.5. 

 

Table 1. Input imprecise data for shape parameters. 

 

Approximate value of the above parameter is  

    Table 2. Defuzzification of the fuzzy numbers. 

 

 

 

 

 

 

 

 

 

 
Parameters 

Items 

I II 

αĩ (200,205,210,215; 0.9) (215,220,225,230; 0.8) 

βĩ (4,5,6,7; 0.8) (5,6,7,8; 0.8) 

h ĩ 
(2,4,5,6; 0.9) (2,2.5,3,3.5; 0.8) 

ρĩ (2,2.3,2.4,2.5; 0.9) (3,3.1,3.2,3.3; 0.9) 
γĩ (90,95,100,105; 0.7) (92,95,98,102; 0.8) 

δĩ (0.02,0.03,0.04,0.05; 0.8) (0.04,0.05,0.06,0.07; 0.8) 

σĩ (0.2,0.3,0.4,0.5; 0.8) (0.2,0.3,0.4,0.5; 0.9) 
w ĩ (1.5,1.6,1.7,1.8; 0.7) (1.7,1.8,1.9,2.0; 0.9) 
τĩ (

1

6
,
1

5
,
1

4
,
1

3
; 0.9) (

1

7
,
1

6
,
1

5
,
1

4
; 0.9) 

Defuzzification of the Fuzzy Numbers Items 

I II 

αî 186.75 178 

βî 4.4 5.2 

hî 3.825 2.2 

ρî 2.07 2.835 

γî 68.25 77.4 

δî 0.028 0.044 

σî 0.28 0.315 

wî 1.155 2.115 

τî 0.21375 0.17089 
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Table 3. Optimal solutions of MOIM using different methods. 

 

 

 

Fig. 2. Minimizing cost of both items using different methods. 

From the above figure shows that GP, FPTHMF, FNLP, and FAGP methods almost provide the same 

results. 

6| Sensitivity Analysis 

In the sensitivity analysis the optimal solutions have been found buy using FNLP method.  

Table 4. Optimal solution of MOIM for different values of  𝛂𝟏, 𝛂𝟐. 

 

 

 

Fig. 3. Minimizing cost of both items for different values of 𝛂𝟏, 𝛂𝟐. 

From the Fig. 3 suggests that the minimum cost of both items is increased when values of 𝛼1, 𝛼2 are 

increased. 

 

Methods 𝐃𝟏
∗ 𝐐𝟏

∗ 𝐋𝟏
∗ 𝐓𝐀𝐂𝟏

∗ 𝐃𝟐
∗ 𝐐𝟐

∗ 𝐋𝟐
∗ 𝐓𝐀𝐂𝟐

∗ 
FPTHMF 2.50 11.51 0.34 × 10−3 53.95 2.28 15.54 0.30 × 10−3 41.03 

FNLP 2.50 11.51 0.34 × 10−3 53.95 2.30 15.57 0.33 × 10−3 41.03 

FAGP 2.49 11.35 0.35 × 10−3 53.96 2.30 15.63 0.37 × 10−3 41.03 

GP 2.58 10.07 0.27 × 10−3 54.58 2.20 17.58 0.42 × 10−3 41.52 

Method 𝛂𝟏, 𝛂𝟐 𝐃𝟏
∗ 𝐐𝟏

∗ 𝐋𝟏
∗ 𝐓𝐀𝐂𝟏

∗ 𝐃𝟐
∗ 𝐐𝟐

∗ 𝐋𝟐
∗ 𝐓𝐀𝐂𝟐

∗ 

 

FNLP 

-20% 2.36 11.12 0.33 × 10−3 52.14 2.19 15.12 0.29 × 10−3 39.82 

-10% 2.43 11.33 0.34 × 10−3 53.09 2.24 15.36 0.33 × 10−3 40.45 

10% 2.56 11.68 0.35 × 10−3 54.75 2.34 15.78 0.37 × 10−3 41.55 

20% 2.61 10.84 0.35 × 10−3 55.49 2.38 17.97 0.42 × 10−3 42.03 
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Table 5. Optimal solution of MOIM for different values of  𝛃𝟏, 𝛃𝟐. 

 

 

 

 

 

Fig. 4. Minimizing cost of 1st and 2nd items for different values of 𝛃𝟏, 𝛃𝟐. 

From the Fig. 4 suggests that the optimal cost of both items is decreased when values of  𝛽1, 𝛽2 are increased. 

 

Table 6. Optimal solution of MOIM for different values of  𝛄𝟏, 𝛄𝟐. 

 

 

 

 

Fig. 5. Minimizing cost of both items for different values of 𝛄𝟏, 𝛄𝟐. 

 

Iuyi 

Method 𝛃𝟏, 𝛃𝟐 𝐃𝟏
∗ 𝐐𝟏

∗ 𝐋𝟏
∗ 𝐓𝐀𝐂𝟏

∗ 𝐃𝟐
∗ 𝐐𝟐

∗ 𝐋𝟐
∗ 𝐓𝐀𝐂𝟐

∗ 

 

FNLP 

-20% 2.93 12.73 0.37 × 10−3 62.82 2.67 17.19 0.32 × 10−3 47.24 

-10% 2.69 12.05 0.35 × 10−3 57.77 2.46 16.30 0.31 × 10−3 43.71 

10% 2.35 11.07 0.33 × 10−3 50.98 2.16 15.00 0.29 × 10−3 38.92 

20% 2.22 10.70 0.32 × 10−3 48.59 2.06 14.52 0.28 × 10−3 37.23 

Method 𝛄𝟏, 𝛄𝟐 𝐃𝟏
∗ 𝐐𝟏

∗ 𝐋𝟏
∗ 𝐓𝐀𝐂𝟏

∗ 𝐃𝟐
∗ 𝐐𝟐

∗ 𝐋𝟐
∗ 𝐓𝐀𝐂𝟐

∗ 

FNLP -20% 2.57 10.58 0.40 × 10−3 49.70 2.34 14.26 0.35 × 10−3 37.60 

10%- 2.53 11.06 0.37 × 10−3 51.89 2.32 14.94 0.32 × 10−3 39.36 

10% 2.47 11.94 0.32 × 10−3 55.92 2.27 16.19 0.28 × 10−3 42.60 

20% 2.45 12.35 0.30 × 10−3 57.78 2.25 16.77 0.26 × 10−3 44.11 
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From the above Fig. 5 suggests that the optimal cost of both items is increased when values of  𝛾1, 𝛾2 

are increased. 

Table 7. Optimal solutions of MOIM for different values of  𝛔𝟏, 𝛔𝟐. 

 

 

 

 

 

Fig. 6. Minimizing cost of 1st and 2nd items for different values of 𝛔𝟏, 𝛔𝟐. 

From the above Fig. 6 suggests that the minimum cost of both items is increased when values of  𝜎1, 𝜎2 

are increased. 

Table 8. Optimal solutions of MOIM for different values of 𝛒𝟏, 𝛒𝟐. 

 

 

 

 

Table 9. Optimal solutions of MOIM for different values of  𝛕𝟏, 𝛕𝟐. 

 

 

 

 

 

 

 

Method 𝛔𝟏, 𝛔𝟐 𝐃𝟏
∗ 𝐐𝟏

∗ 𝐋𝟏
∗ 𝐓𝐀𝐂𝟏

∗ 𝐃𝟐
∗ 𝐐𝟐

∗ 𝐋𝟐
∗ 𝐓𝐀𝐂𝟐

∗ 

 

FNLP 

-20% 2.54 11.36 0.35 × 10−3 52.92 2.33 15.35 0.31 × 10−3 40.18 

-10% 2.52 11.44 0.35 × 10−3 53.44 2.31 15.46 0.31 × 10−3 40.60 

10% 2.48 11.59 0.33 × 10−3 54.47 2.28 15.70 0.29 × 10−3 41.45 

20% 2.46 11.67 0.33 × 10−3 54.99 2.26 15.81 0.29 × 10−3 41.87 

Method 𝛒𝟏, 𝛒𝟐 𝐃𝟏
∗ 𝐐𝟏

∗ 𝐋𝟏
∗ 𝐓𝐀𝐂𝟏

∗ 𝐃𝟐
∗ 𝐐𝟐

∗ 𝐋𝟐
∗ 𝐓𝐀𝐂𝟐

∗ 

 

FNLP 

-20% 2.50 11.42 0.25 × 10−3 53.44 2.29 15.47 0.23 × 10−3 40.68 

-10% 2.50 11.47 0.30 × 10−3 53.70 2.29 15.53 0.26 × 10−3 40.86 

10% 2.50 11.55 0.39 × 10−3 54.20 2.29 15.64 0.34 × 10−3 41.19 

20% 2.50 11.60 0.43 × 10−3 54.45 2.29 15.69 0.39 × 10−3 41.35 

Method 𝛕𝟏, 𝛕𝟐 𝐃𝟏
∗ 𝐐𝟏

∗ 𝐋𝟏
∗ 𝐓𝐀𝐂𝟏

∗ 𝐃𝟐
∗ 𝐐𝟐

∗ 𝐋𝟐
∗ 𝐓𝐀𝐂𝟐

∗ 

 

FNLP 

-20% 2.50 11.40 0.15 × 10−3 53.15 2.29 15.47 0.14 × 10−3 40.58 

-10% 2.50 11.46 0.23 × 10−3 53.54 2.29 15.52 0.21 × 10−3 40.80 

10% 2.50 11.57 0.48 × 10−3 54.39 2.29 15.64 0.42 × 10−3 41.26 

20% 2.50 11.62 0.67 × 10−3 54.83 2.29 15.69 0.57 × 10−3 41.50 
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Fig. 7. Minimizing cost of both items for different values of 𝜌1, 𝜌2. 

From the above Fig. 7 suggests that the minimum cost of both items is increased when values of 𝜌1, 𝜌2 are 

increased. 

 

Fig. 8. Minimizing cost of 1st and 2nd items for different values of 𝛕𝟏, 𝛕𝟐. 

From the above Fig. 8 suggests that the minimum cost of both items is increased when values of  𝜏1, 𝜏2 

are increased. 

7| Conclusion 

In this article, we have developed an inventory model of multi-item with limitations on storage space in a 

fuzzy environment. Here we considered the constant demand rate and production cost is dependent on 

the demand rate. Set-up- cost is dependent on average inventory level as well as demand. Lead time 

crashing cost is considered the continuous function of leading time. Due to uncertainty all cost parameters 

are taken as a generalized trapezoidal fuzzy number. The formulated problem has been solved by various 

techniques like GP approach, FPTHMF, FNLP, and FAGP. Numerical example is given under considering 

two items to illustrate the model. A numerical problem is solved by using LINGO13 software. 

This paper will be extended by using linear, quadratic demand, ramp type demand, power demand, and 

stochastic demand etc., introduce shortages, generalize the model under two-level credit period strategy 

etc. Inflation plays a crucial position in Inventory Management (IM) but here it is not considered. So 

inflation can be used in this model for practical. Also other types of fuzzy numbers like triangular fuzzy 

numbers; PfFN, pFN, etc. may be used for all cost parameters of the model. 
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Abstract 

 

1 | Introduction  

The concept of Fuzzy Set (FS) 𝐴 = {< 𝑥𝑖, 𝜇𝐴𝑥𝑖
> |𝑥𝑖 ∈ 𝑋} in 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} was proposed by Zadeh 

[1], where the membership degree 𝜇𝐴𝑥𝑖
 is a single value between zero and one. The FS has been widely 

applied in many fields, such as medical diagnosis, image processing, supply decision-making [2]-[4], 

and so on. In some uncertain decision-making problems, the degree of membership is not exactly as 

a numerical value but as an interval. Hence, Zadeh [5] proposed the Interval-Valued Fuzzy Sets 

(IVFS). However, the FS and the IVFS only have the membership degree, and they cannot describe 

the non-membership degree of the element belonging to the set.  
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Then, Atanassov [6] proposed the Intuitionistic Fuzzy Set (IFS) 𝐸 = {< 𝑥𝑖, 𝜇𝐸(𝑥𝑖), 𝜗𝐸(𝑥𝑖) > |𝑥𝑖 ∈ 𝑋}, where 

𝜇𝐸(𝑥𝑖) (0 ≤ 𝜇𝐸(𝑥𝑖) ≤ 1) and 𝜗𝐸(𝑥𝑖) (0 ≤ 𝜗𝐸(𝑥𝑖) ≤ 1) represent the membership and the non-membership 

degree, respectively, and the indeterminacy- membership degree 𝜋𝐸(𝑥𝑖) = 1 − 𝜇𝐸(𝑥𝑖) − 𝜗𝐸(𝑥𝑖). The IFS is 

more effective to deal with the vague information more than the FS and IVFS. 

Yang and Chiclana [7] proposed a spherical representation, which allowed us to define a distance function 

between intuitionistic fuzzy sets. In the spherical representation, hesitancy can be calculated based on the 

given membership and non-membership values since they only consider the surface of the sphere. Besides, 

they measure the spherical arc distance between two IFSs. Furthermore, Gong et al. [8] introduced an 

approach generalizing Yang and Chiclana’s work.  

The Spherical Fuzzy Sets (SFSs) are based on the fact that the hesitancy of a decision maker can be defined 

independently from membership and non-membership degrees, satisfying the following condition: 

 

On the surface of the sphere, Eq. (1) becomes  

 

On the other hand, similarity measure is an important tool in multiple-criteria decision making problems, 

which can be used to measure the difference between the alternatives. Many studies about the similarity 

measures have been obtained. For example, Beg and Ashraf [9] proposed a similarity measure of fuzzy sets 

based on the concept of 𝜖 − fuzzy transitivity and discussed the degree of transitivity of different similarity 

measures. Song et al. [4] considered the similarity measure and proposed corresponding distance measure 

between intuitionistic fuzzy belief functions. In addition, cosine similarity measure is also an important 

similarity measure, and it can be defined as the inner product of two vectors divided by the product of 

their lengths. There are some scholars who studied the cosine similarity measures [10]-[15]. Various forms 

of Spherical fuzzy sets which are applied in Multi–attribute decision making problems are developed in 

[16]-[18]. 

In this paper, we propose a new method to construct the similarity measure of SFSs. They play an 

important role in practical application, especially in pattern recognition, medical diagnosis, and so on. 

Furthermore, the proposed similarity measure can be applied more widely in the field of decision–making 

problems. 

2| Preliminaries 

Definition 1. [19]. A SFS 𝐴𝑠̃ of the universe of discourse U is given by, 

𝐴̃
𝑠 = {〈𝜇𝐴̃𝑠

(𝑢), 𝜗𝐴̃𝑠
(𝑢), 𝜋𝐴̃𝑠

(𝑢)|𝑢 ∈ 𝑈 〉}, where 𝜇𝐴̃𝑠
: 𝑈 → [0,1], 𝜗𝐴̃𝑠

: 𝑈 → [0,1], 𝜋𝐴̃𝑠
: 𝑈 → [0,1] and 0 ≤

𝜇𝐴̃𝑠
2(𝑢) + 𝜗𝐴̃𝑠

2(𝑢) + 𝜋𝐴̃𝑠
2(𝑢) ≤ 1.    ∀  𝑢 ∈ 𝑈.   

For each 𝑢, the numbers 𝜇𝐴̃𝑠
(𝑢), 𝜗𝐴̃𝑠

(𝑢) 𝑎𝑛𝑑 𝜋𝐴̃𝑠
(𝑢) are the degree of membership, non-membership and 

hesitancy of 𝑢 to 𝐴̃
𝑠, respectively. 

Definition 2. [9]. Basic operators of spherical fuzzy sets: 

Union. 𝐴𝑠̃ ∪ 𝐵̃𝑠 = {𝑚𝑎𝑥{𝜇𝐴̃𝑠
, 𝜇𝐵̃𝑠

}, 𝑚𝑖𝑛{𝜗𝐴̃𝑠
, 𝜗𝐵̃𝑠

}, 𝑚𝑖𝑛{𝜋𝐴̃𝑠
, 𝜋𝐵̃𝑠

} }.         

0 ≤ μÃ
2(u) + ϑÃ

2(u) + πÃ
2(u) ≤ 1.  ∀ u ∈ U.        (1) 

μÃ
2(u) + ϑÃ

2(u) + πÃ
2(u) = 1.                    ∀ u ∈ U.         (2) 
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Intersection. 𝐴𝑠̃ ∩ 𝐵̃𝑠 = {𝑚𝑖𝑛{𝜇𝐴̃𝑠
, 𝜇𝐵̃𝑠

}, 𝑚𝑎𝑥{𝜗𝐴̃𝑠
, 𝜗𝐵̃𝑠

}, 𝑚𝑎𝑥{𝜋𝐴̃𝑠
, 𝜋𝐵̃𝑠

}}.  

Addition. 𝐴𝑠̃⨁ 𝐵̃𝑠 = {(𝜇𝐴̃𝑠
2 + 𝜇𝐵̃𝑠

2 − 𝜇𝐴̃𝑠
2𝜇𝐵̃𝑠

2)
1 2⁄

, 𝜗𝐴̃𝑠
𝜗𝐵̃𝑠

, 𝜋𝐴̃𝑠
𝜋𝐵̃𝑠

}. 

Multiplication. 𝐴𝑠̃⨂ 𝐵̃𝑠 = {𝜇𝐴̃𝑠
𝜇𝐵̃𝑠

, (𝜗𝐴̃𝑠
2 + 𝜗𝐵̃𝑠

2 − 𝜗𝐴̃𝑠
2𝜗𝐵̃𝑠

2)
1 2⁄

, 𝜋𝐴̃𝑠
𝜋𝐵̃𝑠

}. 

Multiplication by a scalar, 𝝀 > 𝟎. 𝜆.𝐴̃
𝑠 = {(1 − (1 − 𝜇𝐴̃𝑠

2)
𝜆
)
1 2⁄

,  𝜗𝐴̃𝑠
𝜆,  𝜋𝐴̃𝑠

𝜆
} . 

Power of 𝑨̃𝒔, 𝝀 > 𝟎. 𝐴̃
𝑠
𝜆
=  { 𝜇𝐴̃𝑠

𝜆, (1 − (1 − 𝜗𝐴̃𝑠
2)

𝜆
)
1 2⁄

,  𝜋𝐴̃𝑠
𝜆
}. 

3| Several New Similarity Measures 

The similarity measure is a most widely used tool to evaluate the relationship between two sets. The 

following axiom about the similarity measure of IVSFSs should be satisfied: 

Lemma 1. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be the universal set [12] if the similarity measure S (A, B) between 

SFSs A and B satisfies the following properties: 

0 ≤ 𝑆(𝐴, 𝐵) ≤ 1; 

𝑆(𝐴, 𝐵) = 1 if and only if 𝐴 = 𝐵; 

 𝑆(𝐴, 𝐵) = 𝑆(𝐵,𝐴). 

Then, the similarity measure 𝑆(𝐴, 𝐵) is a genuine similarity measure. 

3.1| The New Similarity Measures between SFSs 

Definition 3. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be the universal set for any two SFSs 𝐴 = {< 𝑥𝑖, 𝜇𝐴𝑥𝑖
, 𝜗𝐴𝑥𝑖

, 𝜋𝐴𝑥𝑖
>

|𝑥𝑖 ∈ 𝑋} and 𝐵 = {< 𝑥𝑖, 𝜇𝐵𝑥𝑖
, 𝜗𝐵𝑥𝑖

, 𝜋𝐵𝑥𝑖
> |𝑥𝑖 ∈ 𝑋}; then the Euclidean distance between SFSs 𝐴 and 𝐵 is 

defined as follows: 

 

Now, we construct new similarity measures of SFSs based on the Euclidean distance measures. 

Definition 4. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be the universal set for any two SFSs 𝐴 = {< 𝑥𝑖, 𝜇𝐴𝑥𝑖
, 𝜗𝐴𝑥𝑖

, 𝜋𝐴𝑥𝑖
>

|𝑥𝑖 ∈ 𝑋} and 𝐵 = {< 𝑥𝑖, 𝜇𝐵𝑥𝑖
, 𝜗𝐵𝑥𝑖

, 𝜋𝐵𝑥𝑖
> |𝑥𝑖 ∈ 𝑋}; the similarity measure of SFSs between 𝐴 and 𝐵 is 

defined as follows: 

The similarity measure 𝑆1𝑆𝐹𝑆𝑠 satisfies the properties in Lemma 1.  

DSFSs(A, B) = √∑ [(μA
2(xi)−μB

2(xi))
2

+(ϑA
2(xi)−ϑB

2(xi))
2

+(πA
2(xi)−πB

2(xi))
2

]n
i=1

3n
 .      

(3) 

S1SFSs(A, B) =
∑ (min(μA

2(xi),μB
2(xi))+ min(ϑA

2(xi),ϑB
2(xi))+min(πA

2(xi),πB
2(xi)))

n
i=1

∑ (max(μA
2(xi),μB

2(xi))+ max(ϑA
2(xi),ϑB

2(xi))+max(πA
2(xi),πB

2(xi)))
n
i=1

.     

  

(4) 
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Next, we propose a new method to construct a new similarity measure of SFSs, and the Euclidean distance, 

it can be defined as follows: 

Definition 5. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be the universal set for any two SFSs 𝐴 = {< 𝑥𝑖, 𝜇𝐴𝑥𝑖
, 𝜗𝐴𝑥𝑖

, 𝜋𝐴𝑥𝑖
> |𝑥𝑖 ∈

𝑋} and𝐵 = {< 𝑥𝑖, 𝜇𝐵𝑥𝑖
, 𝜗𝐵𝑥𝑖

, 𝜋𝐵𝑥𝑖
> |𝑥𝑖 ∈ 𝑋}; a new similarity measure 𝑆∗

1𝑆𝐹𝑆𝑠(𝐴, 𝐵) is defined as follows: 

The proposed similarity measure of SFSs satisfies the Theorem 1. 

Theorem 1. The similarity measure 𝑆∗
1𝑆𝐹𝑆𝑠(𝐴, 𝐵) between 𝐴 = {< 𝑥𝑖, 𝜇𝐴𝑥𝑖

, 𝜗𝐴𝑥𝑖
, 𝜋𝐴𝑥𝑖

> |𝑥𝑖 ∈ 𝑋} and𝐵 = {<

𝑥𝑖, 𝜇𝐵𝑥𝑖
, 𝜗𝐵𝑥𝑖

, 𝜋𝐵𝑥𝑖
> |𝑥𝑖 ∈ 𝑋} satisfies the following properties: 

0 ≤ 𝑆∗
1𝑆𝐹𝑆𝑠(𝐴, 𝐵) ≤ 1 

𝑆∗
1𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1 if and only if 𝐴 = 𝐵 

 𝑆∗
1𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 𝑆∗

1𝑆𝐹𝑆𝑠(𝐵,𝐴). 

Proof. Because 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) is an Euclidean distance measure, obviously, 0 ≤ 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) ≤ 1. Furthermore, 

according to lemma 1, we know that 0 ≤ 𝑆1𝑆𝐹𝑆𝑠(𝐴, 𝐵) ≤ 1. Then, 0 ≤
1

2
(𝑆1𝑆𝐹𝑆𝑠(𝐴, 𝐵) + 1 − 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵)) ≤ 1, 

i.e., 0 ≤ 𝑆∗
1𝑆𝐹𝑆𝑠(𝐴, 𝐵) ≤ 1. 

If 𝑆∗
1𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1, we have 𝑆1𝑆𝐹𝑆𝑠(𝐴, 𝐵) + 1 − 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 2, that is 𝑆1𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1 + 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵). 

Because 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) is the Euclidean distance measure 0 ≤ 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) ≤ 1. Furthermore, 0 ≤ 𝑆1𝑆𝐹𝑆𝑠(𝐴, 𝐵) ≤

1, then 𝑆1𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1 and 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 0 should be established at the same time. If the Euclidean distance 

measure 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 0, 𝐴 =  𝐵 is obvious. According to lemma 1, when 𝑆1𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1, 𝐴 =  𝐵; so if 

𝑆∗
1𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1, 𝐴 =  𝐵 is obtained.     

On the other hand, when 𝐴 = 𝐵, according to Eqs. (3) and (4) 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 0 and 𝑆1𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1 are 

obtained respectively. Furthermore, we can get 𝑆∗
1𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1.  𝑆∗

1𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 𝑆∗
1𝑆𝐹𝑆𝑠(𝐵,𝐴) is 

straightforward.  

From Theorem 1, we know that the proposed new similarity measure  𝑆∗
1𝑆𝐹𝑆𝑠(𝐴, 𝐵) is a genuine similarity 

measure. On the other hand, cosine similarity measure is also an important similarity measure. The cosine 

similarity measure between SFSs is as follows: 

Definition 6. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be the universal set for any two SFSs 𝐴 = {< 𝑥𝑖, 𝜇𝐴𝑥𝑖
, 𝜗𝐴𝑥𝑖

, 𝜋𝐴𝑥𝑖
> |𝑥𝑖 ∈

𝑋} and 𝐵 = {< 𝑥𝑖, 𝜇𝐵𝑥𝑖
, 𝜗𝐵𝑥𝑖

, 𝜋𝐵𝑥𝑖
> |𝑥𝑖 ∈ 𝑋}; the cosine similarity measure of SFSs between 𝐴 and 𝐵 is defined 

as follows: 

Now, we are going to propose another similarity measure of SFSs based on the cosine similarity measure 

and the Euclidean distance 𝐷𝑆𝐹𝑆𝑠. It considers the similarity measure not only from the point of view of 

algebra but also from the point of view of geometry, which can be defined as: 

Definition 7. Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑛} be the universal set for any two SFSs 

S ∗
1SFSs(A, B) =

1

2
(S1SFSs(A, B) + 1 − DSFSs(A, B)).                                               (5) 

S2SFSs(A, B) =

1

n
∑

((μA
2(xi)μB

2(xi))+ (ϑA
2(xi) ϑB

2(xi))+(πA
2(xi) πB

2(xi)))

√(μA
2(xi))2+ (ϑA

2(xi))2+(πA
2(xi))2 √(μB

2(xi))2+ (ϑB
2(xi))2+(πB

2(xi))2 

n
i=1   .  

(6) 
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𝐴 = {< 𝑥𝑖, 𝜇𝐴𝑥𝑖
, 𝜗𝐴𝑥𝑖

, 𝜋𝐴𝑥𝑖
> |𝑥𝑖 ∈ 𝑋} and 𝐵 = {< 𝑥𝑖, 𝜇𝐵𝑥𝑖

, 𝜗𝐵𝑥𝑖
, 𝜋𝐵𝑥𝑖

> |𝑥𝑖 ∈ 𝑋}; a new similarity measure 

𝑆∗
2𝑆𝐹𝑆𝑠(𝐴, 𝐵) is defined as follows: 

 

 

Theorem 2. The similarity measure 𝑆∗
2𝑆𝐹𝑆𝑠(𝐴, 𝐵) between 𝐴 = {< 𝑥𝑖, 𝜇𝐴𝑥𝑖

, 𝜗𝐴𝑥𝑖
, 𝜋𝐴𝑥𝑖

> |𝑥𝑖 ∈ 𝑋} and 

𝐵 = {< 𝑥𝑖, 𝜇𝐵𝑥𝑖
, 𝜗𝐵𝑥𝑖

, 𝜋𝐵𝑥𝑖
> |𝑥𝑖 ∈ 𝑋} satisfies the following properties: 

0 ≤ 𝑆∗
2𝑆𝐹𝑆𝑠(𝐴, 𝐵) ≤ 1; 

𝑆∗
2𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1 if and only if 𝐴 = 𝐵; 

 𝑆∗
2𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 𝑆∗

2𝑆𝐹𝑆𝑠(𝐵,𝐴). 

Proof. Because 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) is an Euclidean distance measure, obviously, 0 ≤ 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) ≤ 1. 

Furthermore, according to lemma 1, we know that 0 ≤ 𝑆𝑆𝐹𝑆𝑠(𝐴, 𝐵) ≤ 1. Then, 0 ≤
1

2
(𝑆2𝑆𝐹𝑆𝑠(𝐴, 𝐵) + 1 −

𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵)) ≤ 1, i.e., 0 ≤ 𝑆∗
1𝑆𝐹𝑆𝑠(𝐴, 𝐵) ≤ 1. 

If 𝑆∗
2𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1, we have 𝑆2𝑆𝐹𝑆𝑠(𝐴, 𝐵) + 1 − 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 2, that is 𝑆2𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1 + 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵). 

Because 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) is the Euclidean distance measure 0 ≤ 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) ≤ 1.  Furthermore, 0 ≤

𝑆2𝑆𝐹𝑆𝑠(𝐴, 𝐵) ≤ 1, then 𝑆2𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1 and 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 0 should be established at the same time. When 

𝑆2𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1, we have 𝜇𝐴(𝑥𝑖) = 𝑘𝜇𝐵(𝑥𝑖), 𝜗𝐴(𝑥𝑖) = 𝑘𝜗𝐵(𝑥𝑖), 𝑎𝑛𝑑  𝜋𝐴(𝑥𝑖) = 𝑘𝜋𝐵(𝑥𝑖) (𝑘 is a constant).  

When the Euclidean distance measure 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 0,𝐴 =  𝐵. Then 𝐴 =  𝐵 is obtained.     

On the other hand, when 𝐴 = 𝐵, according to Eqs. (3) and (6) if 𝐴 =  𝐵, 𝐷𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 0 and 

𝑆2𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1 are obtained respectively. Furthermore, we can get 𝑆∗
2𝑆𝐹𝑆𝑠(𝐴, 𝐵) = 1.    𝑆∗

2𝑆𝐹𝑆𝑠(𝐴, 𝐵) =

𝑆∗
2𝑆𝐹𝑆𝑠(𝐵,𝐴) is straightforward.  

Thus 𝑆∗
2𝑆𝐹𝑆𝑠(𝐴, 𝐵) satisfies all the properties of the Theorem 2.  

In the next section, we will apply the proposed new similarity measures to medical diagnosis decision 

problem; numerical examples are also given to illustrate the application and effectiveness of the 

proposed new similarity measures. 

4| Applications of the Proposed Similarity Measures 

4.1| The Proposed Similarity Measures between SFSs for Medical Diagnosis 

We first give a numerical example medical diagnosis to illustrate the feasibility of the proposed new 

similarity measur 𝑆∗
1𝑆𝐹𝑆𝑠(𝐴, 𝐵)e  and 𝑆∗

2𝑆𝐹𝑆𝑠(𝐴, 𝐵) between SFSs. 

Example 1. Consider a medical diagnosis decision problem; Suppose a set of diagnosis 𝑄 = {𝑄1(viral 

fever), 𝑄2(malaria), 𝑄3(typhoid), 𝑄4(Gastritis), 𝑄5(stenocardia)} and a set of symptoms 𝑆 ={𝑆1(fever), 

𝑆2(headache), 𝑆3(stomach), 𝑆4(cough), 𝑆5(chestpain)}. Assume a patient 𝑃1 has all the symptoms in the 

process of diagnosis, the SFS evaluate information about 𝑃1 is 

𝑃1(Patient= {< 𝑆1, 0.8, 0.2,0.1 >, < 𝑆2, 0.6, 0.3, 0.1 >, < 𝑆3, 0.2, 0.1, 0.8 >) < 𝑆4, 0.6, 0.5, 0.1 >, 
<𝑆5, 0.1, 0.4, 0.6 >}. 

S ∗
2SFSs(A, B) =

1

2
(S2SFSs(A, B) + 1 − DSFSs(A, B)).                                           

  
(7) 
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The diagnosis information 𝑄𝑖(𝑖 = 1,2, … ,5) with respect to symptoms 𝑆𝑖(𝑖 = 1,2, … ,5) also can be 

represented by the SFSs, which is shown in Table 1. 

Table 1. Diagnosis information. 

 

 

By applying Eqs. (5) and (7) we can obtain the similarity measure values 𝑆∗
1𝑆𝐹𝑆𝑠(𝑃1, 𝑄𝑖)  and 𝑆∗

2𝑆𝐹𝑆𝑠(𝑃1, 𝑄𝑖); 

the results are shown in Table 2. 

Table 2. Similarity measures.  

 

 

From the above two similarity measures 𝑆∗
1𝑆𝐹𝑆𝑠 and 𝑆∗

2𝑆𝐹𝑆𝑠 , we can conclude that the diagnoses of the 

patient 𝑃1 are all malaria (𝑄2). The proposed two similarity measures are feasible and effective. 

4.2| Comparative Analysis of Existing Similarity Measures 

To illustrative the effectiveness of the proposed similarity measures for medical diagnosis, we change the 

existing similarity measures for SFS and thus will apply the existing similarity measures for comparative 

analyses. 

At first, we introduce the existing similarity measures between SFSs as follows: 

 Let 𝐴 = {< 𝑥𝑖, 𝜇𝐴𝑥𝑖
, 𝜗𝐴𝑥𝑖

, 𝜋𝐴𝑥𝑖
> |𝑥𝑖 ∈ 𝑋} an 𝐵 = {< 𝑥𝑖, 𝜇𝐵𝑥𝑖

, 𝜗𝐵𝑥𝑖
, 𝜋𝐵𝑥𝑖

> |𝑥𝑖 ∈ 𝑋}d be two SFSs in 𝑋 =

{𝑥1, 𝑥2, … , 𝑥𝑛}, the existing measures between 𝐴 and 𝐵 are defined as follows: 

Broumi et al. [20]  proposed the similarity measure 𝑆𝑀𝑆𝐹𝑆:  

Sahin and Küçük [21] proposed the similarity measure 𝑆𝐷𝑆𝐹𝑆: 

Ye [22] proposed the improved cosine similarity measure 𝑆𝐶1𝑆𝐹𝑆 and 𝑆𝐶2𝑆𝐹𝑆: 

 

 

 

 𝐒𝟏 𝐒𝟐 𝐒𝟑 𝐒𝟒 𝐒𝟓 

𝐐𝟏 [0.4, 0.6,0.0] [0.3, 0.2, 0.5] [0.1, 0.3, 0.7] [0.4, 0.3, 0.3] [0.1, 0.2, 0.7] 

𝐐𝟐 [0.7, 0.3, 0.0] [0.2, 0.2, 0.6] [0.0, 0.1, 0.9] [0.7, 0.3, 0.0] [0.1, 0.1, 0.8] 

𝐐𝟑 [0.3, 0.4, 0.3] [0.6, 0.3, 0.1] [0.2, 0.1, 0.7] [0.2, 0.2, 0.6] [0.1, 0.0, 0.9] 

𝐐𝟒 [0.1, 0.2, 0.7] [0.2, 0.2, 0.4] [0.8, 0.2, 0.0] [0.2, 0.1, 0.7] [0.2, 0.1, 0.7] 

𝐐𝟓 [0.1, 0.1, 0.8] [0.0, 0.2,0.8] [0.2, 0.0, 0.8] [0.3, 0.1, 0.8] [0.8, 0.1, 0.1] 

 𝐐𝟏 𝐐𝟐 𝐐𝟑 𝐐𝟒 𝐐𝟓 

𝐒∗
𝟏𝐒𝐅𝐒𝐬(𝐏𝟏, 𝐐𝐢) 0.5980 0.6801 0.5729 0.3919 0.3820 

𝐒∗
𝟐𝐒𝐅𝐒𝐬(𝐏𝟏, 𝐐𝐢) 0.4277 0.4581 0.4024 0.3514 0.3155 

SMSFS(A, B) = 1 − DSFS(A, B).                       (8) 

SDSFS =
1

1+DSFS(A,B)
.                                        (9) 
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Yong-Wei et al. [23] proposed the similarity measure 𝑆𝑌𝑆𝐹𝑆(𝐴, 𝐵): 

 

 

 

Example 2. We apply Eqs. (4), (6) and (8) – (12) to calculate Example 1 again; the similarity measure 

values between 𝑃1 and  𝑄𝑖 (𝑖 = 1,2, . . ,5) are shown on Table 3. 

As we can see from Table 3, the patient  𝑃1  is still assigned to malaria ( 𝑄2), and the results are same as 

the proposed similarity measures in this paper, which means the proposed similarity measures are 

feasible and effective.  

   Table 3. Similarity values between patient and symptoms. 

 

 

 

 

The proposed similarity measures in the paper have some advantages in solving multiple criteria decision 

making problems. They are constructed based on the existing similarity measures and Euclidean 

distance, which not only satisfy the axiom of the similarity measure but also consider the similarity 

measure from the points of view of algebra and geometry. Furthermore, they can be applied more widely 

in the field of decision making problems.   

  5| Conclusion 

The similarity measure is widely used in multiple criteria decision making problems. This paper proposed 

a new method to construct the similarity measures combining the existing cosine similarity measure and 

the Euclidean distance measure. And, the similarity measures are proposed not only from the points of 

view of algebra and geometry but also satisfy the axiom of the similarity measure. Furthermore, we apply 

the proposed similarities measures to the medical diagnosis decision problems, and the numerical 

example is used to illustrate the feasibility and effectiveness of the proposed similarity measure, which 

are then compared to other existing similarity measures.   

SC1SFS(A, B)

=
1

n
∑cos [ 

  
  
 
π.max(|μA

2(xi) − μB
2(xi)|, |ϑA

2(xi) − ϑB
2(xi)|, |πA

2(xi) − πB
2(xi)|)

2 ] 
  
  
 n

i=1

 .  
(10) 

SC2SFS(A, B)

=
1

n
∑cos [ 

  
  
 
π. (|μA

2(xi) − μB
2(xi)| + |ϑA

2(xi) − ϑB
2(xi)| + |πA

2(xi) − πB
2(xi)|)

6 ] 
  
  
 

.

n

i=1

 

 

(

1

1

) 

SYSFS(A, B) =
SCSFS(A, B)

SCSFS(A, B) + DSFS(A, B)
. 

 

(12) 

  𝐐𝟏  𝐐𝟐  𝐐𝟑  𝐐𝟒  𝐐𝟓 

𝐒𝐌𝐒𝐅𝐒 0.8003 0.8314 0.7449 0.6388 0.6007 

𝐒𝐃𝐒𝐅𝐒 0.8335 0.8557 0.7967 0.7346 0.7146 

𝐒𝐂𝟏𝐒𝐅𝐒 0.8555 0.9325 0.6469 0.7324 0.6391 

𝐒𝐂𝟐𝐒𝐅𝐒 0.9648 0.9759 0.7531 0.885 0.8585 

𝐒𝐘𝐒𝐅𝐒 0.8107 0.8468 0.7171 0.6697 0.6154 

𝐒𝟏𝐒𝐅𝐒 0.3958 0.5289 0.4010 0.1451 0.1633 

𝐒𝟐𝐒𝐅𝐒 0.0551 0.0849 0.0600 0.0191 0.0304 
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