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Abstract 

   

1 | Introduction 

The mp-quantales were introduced in [13] as an abstraction of the lattice of ideals of an mp - ring 

[1] and the lattice of ideals of a conormal lattice (see [7], [17], [23]). In [13] we proved some 

characterization theorems for mp - quantales that extend some results of [1] and [7] that describe 

the mp - rings, respectively the conormal lattices. The P F - quantales constitute an important 

class of mp - quantales (cf. [13]). They generalize the lattices of ideals in P F - rings. In fact, the 

P F - quantales are the semiprime P F - quantales. The paper [13] also contains several 

characterizations of a P F - quantale.  

An important tool in proving the mentioned results was the reticulation of a coherent quantale 

[6] and [12] (the reticulation of a coherent quantale A is a bounded distributive lattice L(A) whose 
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Stone prime spectrum SpecId, Z(L(A)) is homeomorphic with the Zariski prime spectrum SpecZ(A) of 

A). 

The retic1 ulation construction provides a covariant functor from the category of coherent quantales to 

the category of bounded distributive lattices [6]. 

 In this paper we shall obtain new characterization theorem for mp - quantales and P F - quantales. Some 

of these theorems contain properties expressed in terms of equations or pure and w-pure elements (see 

Theorems 5 and 6), while others (see Theorems 7 and 8) extend some conditions existing in some results of 

[27].  

Now we give a short description of the content of this paper. Section 2 contains some notions and basic 

results in quantale theory [22] and [10]: residuation and negation operation, m - prime and minimal m - 

prime elements, Zariski and flat topologies on the spectra of a quantale, radical elements, etc. In Section 

3 we recall from [6] and [12] the construction of the reticulation L(A) of a coherent quantale A and we 

present some results that describe how the reticulation functor preserves the m - prime elements, the 

annihilators, the pure and the w - pure elements, etc. In Section 4 we discuss the way in which the mp - 

quantales (defined in [13]) generalize the mp - rings [1] and the conormal lattices [7] and [23]. Some 

properties that characterize the mp - quantale are recalled from [13]. The main results of the paper are 

placed in Section 5. We prove three theorems with new algebraic and topological characterizations of 

the mp-quantales. Some characterization results of the P F-quantales (= the semiprime mp-quantales) 

are obtained as corollaries. Some of proofs reflect the way in which the reticulation functor transfer 

some properties of conormal lattices to mp-quantales. 

2|Preliminaries on Quantales 

This section contains some basic notions and results in quantale theory [22] and [10]. Let (A, W, ∧, ·, 0, 

1) be a quantale and K(A) the set of its compact elements. A is said to be integral if (A, ·, 1) is a monoid 

and commutative, if the multiplication is commutative. A frame is a quantale in which the multiplication 

coincides with the meet [17]. The quantale A is algebraic if any a ∈ A has the form a = W X for some 

subset X of K(A). An algebraic quantale A is coherent if 1 ∈ K(A) and K(A) is closed under the 

multiplication. The set Id(R) of ideals of a (unital) commutative ring R is a coherent quantale and the 

set Id(L) of ideals of a bounded distributive lattice L is a coherent frame. 

Throughout this paper, the quantales are assumed to be integral and commutative. We shall write ab 

instead of a · b. We fix a quantale A. 

On each quantale A one can consider a residuation operation (= implication) a → b = W {x|ax ≤ b} 

and a negation operation a ⊥ = a ⊥A, defined by a ⊥ = a → 0 = W {x ∈ A|ax = 0} (extending the 

terminology from ring theory [2], a ⊥ is also called the annihilator of a). Then for all a, b, c ∈ A the 

following residuation rule holds: a ≤ b → c if and only if ab ≤ c, so (A, ∨, ∧, ·, →, 0, 1) becomes a 

(commutative) residuated lattice. Particularly, we have a ≤ b ⊥ if and only if ab = 0. In this paper we shall 

use without mention the basic arithmetical 2 properties of a residuated lattice [11]. 

An element p < 1 of A is m-prime if for all a, b ∈ A, ab ≤ p implies a ≤ p or b ≤ p. If A is an algebraic 

quantale, then p < 1 is m-prime if and only if for all c, d ∈ K(A), cd ≤ p implies c ≤ p or d ≤ p. Let us 

introduce the following notations: Spec(A) is the set of m-prime elements and M ax(A) is the set of 

maximal elements of A. If 1 ∈ K(A) then for any a < 1 there exists m ∈ M ax(A) such that a ≤ m. The 

same hypothesis 1 ∈ K(A) implies that M ax(A) ⊆ Spec(A). We remark that the set Spec(R) of prime 

ideals in R is the prime spectrum of the quantale Id(R) and the set of prime ideals in L is the prime 

spectrum of the frame Id(L). 
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Recall from [22] that the radical ρ(a) of an element a of A is defined by ρ(a) = V {p ∈ Spec(A)|a ≤ p}. If 

a = ρ(a) then a is said to be a radical element of A. The set R(A) of the radical elements of A is a frame 

[22] and [23]. In [6] it is proven that Spec(A) = Spec(R(A)) and M ax(A) = M ax(R(A)). 

Lemma 1. [19]. Let A be a coherent quantale and a ∈ A. Then 

ρ(a) = W {c ∈ K(A)|c k ≤ a for some integer k ≥ 1}. 

 For any c ∈ K(A), c ≤ ρ(a) iff c k ≤ a for some k ≥ 1. 

A is semiprime if and only if for any integer k ≥ 1, c k = 0 implies c = 0. 

Let A be a quantale such that 1 ∈ K(A). For any a ∈ A, denote DA(a) = D(a) = {p ∈ Spec(A)|a 6≤ p} 

and VA(a) = V (a) = {p ∈ Spec(A)|a ≤ p}. Then Spec(A) is endowed with a topology whose closed sets 

are (V (a))a∈A. If the quantale A is algebraic then the family (D(c))c∈K(A) is a basis of open sets for this 

topology. The topology introduced here generalizes the Zariski topology (defined on the prime spectrum 

Spec(R) of a commutative ring R [2]) and the Stone topology (defined on the prime spectrum SpecId(L) 

of a bounded distributive lattice L [3]). Then this topology will be also called the Zariski topology of 

Spec(A) and the corresponding topological space will be denoted by SpecZ(A). According to [13], 

SpecZ(A) is a spectral space in the sense of [15]. The flat topology associated with this spectral space has 

as basis the family of the complements of compact open subsets of SpecZ(A)(cf.[8] and [17]). Recall from 

[13] that the family {V (c)|c ∈ K(A)} is a basis of open sets for the flat topology on Spec(A). We shall 

denote by SpecF (A) this topological space. For any p ∈ Spec(A), let us denote Λ(p) = {q ∈ Spec(A)|q ≤ 

p}. According to Proposition 5.6 of [13], the flat closure clF ({p}) of the set {p} is equal to Λ(p). 

Let L be a bounded distributive lattice. For any x ∈ L, denote DId(x) = {P ∈ SpecId(L)|x 6∈ P} and 

VId(x) = {P ∈ SpecId,Z(L)|x ∈ P}. The family (DId(x))x∈L is a basis of open sets for the Stone topology 

on SpecId(L); this topological space will be denoted by SpecId,Z(L). We will denote by SpecId,F (L) the 

prime spectrum SpecId(L) endowed with the flat topology; the family (VId(x))x∈L is a basis of open sets 

for the flat topology. 

If A is a quantale then we denote by M in(A) the set of minimal m - prime elements of A; M in(A) is called 

the minimal prime spectrum of A. If 1 ∈ K(A) then for any p ∈ Spec(A) there exists q ∈ M in(A) such that 

q ≤ p. 

Proposition 1. If A is a coherent quantale and p ∈ Spec(A) then p ∈ M in(A) if and only if for all c ∈ K(A), 

the following equivalence holds: c ≤ p iff c → ρ(0) 6≤ p. 

Corollary 1. [18]. If A is a semiprime coherent quantale and p ∈ Spec(A) then p ∈ M in(A) if and only if 

for all c ∈ K(A), the following equivalence holds: c ≤ p iff c ⊥ 6≤ p.  

An element e of the quantale A is a complemented element if there exists f ∈ A such that e∨f = 1 and e∧f 

= 0. The set B(A) of complemented elements of A is a Boolean algebra (cf. [5] and [16]). B(A) will be called 

the Boolean center of the quantale A. 

Proposition 2. If a ∈ A then a ⊥ = V (V (a ⊥) T M in(A)). 
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3|Reticulation of a Coherent Quantale 

Let A be a coherent quantale and K(A) the set of its compact elements. We define the following 

equivalence relation on the set K(A): for all c, d ∈ K(A), c ≡ d iff ρ(c) = ρ(d). The quotient set L(A) = 

K(A)/ ≡ is a bounded distributive lattice. For any c ∈ K(A) denote by c/ ≡ its equivalence class. Consider 

the canonical surjection λA : K(A) → L(A) defined by λA(c) = c/ ≡, for any c ∈ K(A). The pair (L(A), 

λA : K(A) → L(A)) (or shortly L(A)) will be called the reticulation of A. In [6] and [12] an axiomatic 

definition of the reticulation of a coherent quantale was given. We remark that the reticulation L(R) of a 

commutative ring R (defined in [17] and [23]) is isomorphic with the reticulation L(Id(R)) of the quantale 

Id(R). 

For any a ∈ A and I ∈ Id(L(A)) let us denote a ∗ = {λA(c)|c ∈ K(A), c ≤ a} and I∗ = W {c ∈ K(A)|λA(c) 

∈ I}. The assignments a 7→ a ∗ and I 7→ I∗ define two order - preserving maps (·) ∗ : A → Id(L(A) 

and (·)∗ : Id(L(A)) → A. The following lemma collects the main properties of the maps (·) ∗ and (·)∗. 

Lemma 2. [6]. The following assertions hold 

If a ∈ A then a ∗ is an ideal of L(A) and a ≤ (a ∗ )∗. 

If I ∈ Id(L(A)) then (I∗) ∗ = I. 

If p ∈ Spec(A) then (p ∗ )∗ = p and p ∗ ∈ SpecId(L(A)). 

If P ∈ SpecId((L(A)) then P∗ ∈ Spec(A). 

If p ∈ K(A) then c ∗ = (λA(c)]. 

If c ∈ K(A) and I ∈ Id(L(A)) then c ≤ I∗ iff λA(c) ∈ I. 

If a ∈ A and I ∈ Id(L(A)) then ρ(a) = (a ∗ )∗, a ∗ = (ρ(a))∗ and ρ(I∗) = I∗. 

If c ∈ K(A) and p ∈ Spec(A) then c ≤ p iff λA(c) ∈ p ∗. 

By the previous lemma one can consider the maps δA : Spec(A) → SpecId(L(A)) and A : SpecId(L(A)) 

→ Spec(A), defined by δA(p) = p ∗ and A(I) = I∗, for all p ∈ Spec(A) and I ∈ SpecId(L(A)). 

Lemma 3. [6] and [13]. The functions δA and A are homeomorphisms w.r.t. the Zariski and the flat 

topologies, inverse to one another. 

We also observe that δA and A are order - isomorphisms. In particular, for any m - prime element p of 

A, we have p ∈ M in(A) if and only in p ∗ ∈ M inId(L(A)). 

We denote by M inZ(A) (resp. M inF (A)) the topological space obtained by restricting the topology of 

SpecZ(A) (resp. SpecF (A)) to M in(A). Then M inZ(A) is homeomorphic to the space M inId,Z(L(A)) 

of minimal prime ideals in L(A) with the Stone topology and M inF (A) is homeomorphic to the space 

M inId,F (L(A)) of minimal prime ideals in L(A) with the flat topology (cf. Lemma 3). By [13], M inZ(A) 

is a zero - dimensional Hausdorff space and M inF (A) is a compact T1 space. 

For a bounded distributive lattice L we shall denote by B(L) the Boolean algebra of the complemented 

elements of L. It is well-known that B(L) is isomorphic to the Boolean center B(Id(L)) of the frame Id(L) 

(see [5] and [17]). By [6], the function λA|B(A) : B(A) → B(L(A)) is a Boolean isomorphism. 
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If L is a bounded distributive lattice and I ∈ Id(L) then the annihilator of I is the following ideal of L(A): 

AnnL(I) = Ann(I) = {x ∈ I|x ∧ y = 0, for all y ∈ L}. 

Let us fix a coherent quantale A. 

Lemma 4. [13]. If c ∈ K(A) and p ∈ Spec(A) then Ann(λA(c)) ⊆ p ∗ if and only if c → ρ(0) ≤ p. 

Proposition 3. [13]. If a is an element of a coherent quantale then Ann(a ∗ ) = (a → ρ(0))∗ ; if A is 

semiprime then Ann(a ∗ ) = (a ⊥) ∗. 

Particularly, for any c ∈ K(A), we have Ann(λA(c)) = (c → ρ(0))∗. 

Proposition 4. [13]. Assume that A is a coherent quantale. If I is an ideal of L(A) then (Ann(I))∗ = I∗ → 

ρ(0); if A is semiprime then (Ann(I))∗ = (I∗) ⊥. 

An ideal I of a commutative ring R is said to be pure if for any x ∈ I we have I ∨ Ann(x) = R. An ideal I 

of a bounded distributive lattice L is said to be a σ -ideal if for any x ∈ I we have I ∨ Ann(x) = L. These 

two notions can be generalized to quantale theory: an element a of an algebraic quantale A is 5 said to be 

pure if for any c ∈ K(A) we have a ∨ c ⊥ = 1. We note that the σ - ideals of a bounded distributive lattice 

L coincide with the pure elements of the frame Id(L). 

An element a of an algebraic quantale A is said to be w - pure [14] if for any c ∈ K(A) we have a ∨ (c → 

ρ(0)) = 1. It is easy to see that any pure element of A is w - pure. 

Lemma 5. [14]. If an element a of a coherent quantale A is w - pure then a ∗ is a σ - ideal of the lattice 

L(A). Particulary, if a is pure then a ∗ is a σ - ideal. 

 Lemma 6. [14]. Let A be a coherent quantale and J a σ - ideal of L(A). Then J∗ is a w - pure element of 

A. 

For any p ∈ Spec(A) let us denote O(p) = W {c ∈ K(A)|c ⊥ 6≤ p}. 

Lemma 7. [14]. Let A be a coherent quantale. If p ∈ Spec(A) and c ∈ K(A) then c ≤ O(p) if and only if c 

⊥ 6≤ p. 

4|From mp-Rings and Conormal Lattices to the mp–Quantales 

Recall from [1] that a commutative ring R is an mp-ring if each prime ideal of R contains a unique minimal 

prime ideal. The following theorem of [1], that collects several characterizations of mp-rings, emphasizes 

some of their algebraic and topological properties. 

Theorem 1. [1]. If R is a commutative ring then the following assertions are equivalent R is an mp – ring. 

If P and Q are distinct minimal prime ideals of the ring R then P +Q = R. 

R/n(R) is an mp - ring, whenever n(A) is the nil - ideal of R. 

SpecF (R) is a normal space. 

The inclusion M inF (R) ⊆ SpecF (R) has a flat continuous retraction. 
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If P is a minimal prime ideal of R then VR(P) is a flat closed subset of SpecF (R). 

For all a, b ∈ R, ab = 0 implies Ann(a n) + Ann(b n) = R, for some integer n ≥ 1. 

Any minimal prime ideal of A is the radical of a unique pure ideal of A. 

The conormal lattices were introduced by Cornish in [7] under the name of normal lattices (a discussion 

of the terminology can be found in [23] and [17]). According to [23], a bounded distributive lattice L is 

conormal if for all a, b ∈ L such that a∧b = 0 there exist x, y ∈ L such that a∧x = b∧y = 0 and x∨y = 1. 

Theorem 2. [7]. If A is a conormal lattice then the following assertions are equivalent 

A is a conormal lattice. 

If P and Q are distinct minimal prime ideals of the lattice L then P ∨ Q = L. 

Any minimal prime ideal of L is a σ – ideal. 

If x, y ∈ L and x ∧ y = 0 then Ann(x) ∨ Ann(y) = L. 

If x, y ∈ L then Ann(x ∧ y) = Ann(x) ∨ Ann(y) = L. 

Any prime ideal of L contains a unique minimal prime ideal. 

For each x ∈ L, Ann(x) is a σ-ideal. 

From the previous two theorems we observe that the mp - rings and the conormal lattices have similar 

characterizations. This remark allows us to extend these notions to quantale theory. A quantale A is said 

to be an mp - quantale if for any m-prime element p of A there exists a unique minimal m - prime 

element q such that q ≤ p. The mp-frames are defined in a similar manner. 

The following theorem establishes a strong connection between mp - quantales, mp - frames and 

conormal lattices. 

Theorem 3. [13]. For any coherent quantale A the following assertions are equivalent 

A is an mp–quantale. 

R(A) is an mp–frame. 

L(A) is a conormal lattice. 

Proof. We know that Spec(A) = Spec(R(A)) and M in(A) = M in(R(A)), so the equivalence (1) ⇔ (2) is 

clear. The equivalence (1) ⇔ (3) was established in [13]. 

The following theorem is a generalization of some parts of Theorems 1 and 2. 

Theorem 4. [13]. For any coherent quantale A the following are equivalent  

A is an mp–quantale. 

For any distinct p, q ∈ M in(A) we have p ∨ q = 1. 
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The inclusion M inF (A) ⊆ SpecF (A) has a flat continuous retraction. 

SpecF (A) is a normal space.  

If p ∈ Spec(A) then V (p) is a closed subset of SpecF (A). 

Recall from [13] that a quantale A is a P F - quantale if for each c ∈ K(A), c ⊥ is a pure element. From [13] 

we know that a quantale A is a P F - quantale if and only if it is a semiprime mp-quantale. 

5|New Characterization Theorems 

This section concerns the new characterization theorems for mp-quantales and P F - quantales. Our results 

extend some characterization theorems of mp -rings and P F - rings proven in [1], [26], [27]. Let us fix a 

coherent quantale A. 

Recall from Section 3 that the maps δA : Spec(A) → SpecId(L(A)) and A : SpecId(L(A)) → Spec(A) are 

order - isomorphisms and homeomorphisms w.r.t. the Zariski and the flat topologies, inverse to one 

another. Then the following lemma is immediate. 

Lemma 8. [13]. The functions δA|M in(A) : M in(A) → M inId(L(A)) and A|M inId(L(A)) : M inId(L(A)) 

→ M in(A) are homeomorphisms w.r.t. the Zariski and the flat topologies, inverse to one another. 

The previous lemma allows us to transfer some topological results from M inId(L(A)) to M in(A). Often 

we shall apply this lemma and its direct consequences without mention. 

Theorem 5. The following assertions are equivalent: 

A is an mp–quantale. 

Any minimal m-prime element of A is w - pure. 

Proof.  

(1) ⇒ (2) Let p be a minimal m - prime element of A, hence p ∗ ∈ M inId(L(A)) (cf. Lemma 8). According 

to Theorem 3, L(A) is a conormal lattice, hence, by using Theorem 2, it follows that p ∗ is a σ - ideal of the 

lattice L(A). By Lemmas 2 and 6, p = (p ∗ )∗ is a w - pure element of A. 

(2) ⇒ (1) Let P be a minimal prime ideal of L(A), so P = p ∗ , for some minimal m - prime element p of A 

(cf. Lemma 8). By hypothesis (2), p is a w-pure element of A. According to Lemma 5, P = p ∗ is a σ - ideal 

of L(A). Applying the implication (3) ⇒ (1) of Theorem 2, it follows that L(A) is a conormal lattice, so A 

is an mp - quantale (cf. Theorem 3). 

Corollary 2. If A is semiprime then the following assertions are equivalent 

A is a P F – quantale. 

Any minimal m-prime element of A is pure. 
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Proof. 

We know from [13] that A is a P F - quantale if and only if it is a semiprime mp - quantale. In a semiprime 

quantale the pure and the w - pure elements coincide, so the corollary follows from Theorem 5. 

Theorem 6. The following are equivalent 

A is an mp–quantale. 

For all c, d ∈ K(A), cd ≤ ρ(0) implies (c → ρ(0)) ∨ (d → ρ(0)) = 1. 

For all c, d ∈ K(A), cd → ρ(0) = (c → ρ(0)) ∨ (d → ρ(0)). 

For any c ∈ K(A), c → ρ(0) is a w - pure element of A. 

For all c, d ∈ K(A), cd = 0 implies (c n) ⊥ ∨ (d n) ⊥ = 1. 

For any minimal m - prime element p of A there exists a unique pure element q such that p = ρ(q). 

Proof. 

 (1) ⇒ (2) Assume by absurdum that there exist c, d ∈ K(A), such that cd ≤ ρ(0) and (c → ρ(0)) ∨ (c → 

ρ(0)) < 1, so (c → ρ(0)) ∨ (c → ρ(0)) ≤ m, for some maximal element m of A. Consider a minimal m - 

prime element p of A such that p ≤ m. By Theorem 5, p is a w - pure element of A. From cd ≤ ρ(0) ≤ p 

we get c ≤ p or d ≤ p (because p is m - prime). Assuming that c ≤ p we get p ∨ (c → ρ(0) = 1 (because 

p is a w - pure element), contradicting that p ≤ m and c → ρ(0) ≤ m. Thus the implication (1) ⇒ (2) is 

verified. 

(2) ⇒ (1) Let p, q be two distinct minimal m - prime elements of A, hence there exists d ∈ K(A) such 

that d ≤ p and d 6≤ q. By Proposition 1, from d ≤ p it follows that d → ρ(0) 6≤ p, so there exists c ∈ 

K(A) such that c ≤ d → ρ(0) and c 6≤ p. Then cd ≤ ρ(0), hence (c → ρ(0)) ∨ (d → ρ(0)) = 1 ( by 

hypothesis (2). The last equality implies that there exist e, f ∈ K(A) such that e ≤ (c → ρ(0)), f ≤ (d → 

ρ(0)) and e ∨ f = 1. From ce ≤ ρ(0) ≤ p and c 6≤ p we obtain e ≤ p. Similarly, we can prove that f ≤ q, 

so p ∨ q = 1. By applying the implication (2) → (1) of Theorem 4, it results that A is an mp-quantale. 

(2) ⇒ (3) Firstly we shall establish the inequality cd → ρ(0) ≤ (c → ρ(0)) ∨ (d → ρ(0)). Let e be a compact 

element of A such that e ≤ cd → ρ(0), hence we get cde ≤ ρ(0). In accordance with the hypothesis (2), 

it follows that (ce → ρ(0))∨(d → ρ(0)) = 1, so there exist x, y ∈ K(A) such that x ≤ ce → ρ(0) and y ≤ 

d → ρ(0) and x∨y = 1. From x ≤ ce → ρ(0) we obtain ex ≤ c → ρ(0). 

Then e = e(x ∨ y) = ex ∨ ey ≤ ex ∨ y ≤ (c → ρ(0)) ∨ (d → ρ(0)), so we have proven that cd → ρ(0) ≤ 

(c → ρ(0)) ∨ (d → ρ(0)). 

From cd ≤ c and cd ≤ d it results that c → ρ(0) ≤ cd → ρ(0) and d → ρ(0) ≤ cd → ρ(0), hence the 

converse inequality (c → ρ(0)) ∨ (d → ρ(0)) ≤ cd → ρ(0) follows. 

(3) ⇒ (2) If cd ≤ ρ(0) then, by using the property (3), it follows that (c → ρ(0)) ∨ (d → ρ(0)) = cd → 

ρ(0) = 1. 

(2) ⇒ (4) Let c be a compact element of A. Assume that d is a compact element of A such that d ≤ c → 

ρ(0), so cd ≤ ρ(0), hence (c → ρ(0)) ∨ (d → ρ(0)) = 1 ( by the condition (2)). It results that c → ρ(0) is 

a  
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w-pure element of A. 

(4) ⇒ (2) Assume that c, d ∈ K(A) and cd ≤ ρ(0), so d ≤ c → ρ(0). Since c → ρ(0) is a w - pure element 

of A, the equality (c → ρ(0)) ∨ (d → ρ(0)) = 1 follows. 

(1) ⇒ (5) By Theorem 3, the reticulation L(A) is a conormal lattice. Assume that c, d ∈ K(A) and cd = 0, 

hence λA(c)∧λA(d) = λA(cd) = λA(0) = 0 (by Definition 3(ii) of [6]). In accordance with Lemma 4.4 of 

[14], we know that the function (·) ∗ : A → Id(L(A)) preserves the joins. According to Theorem 2, we have 

Ann(λA(c)) ∨ Ann(λA(d)) = L(A), hence, by using Proposition 3, it follows that ((c → ρ(0)) ∨ (c → ρ(0)))∗ 

= ((c → ρ(0))∗ ∨ (c → ρ(0))∗ = (c → ρ(0))⊥ ∨ (c → ρ(0))⊥ = Ann(λA(c)) ∨ Ann(λA(d)) = L(A). 

By applying Lemma 2, it follows that ρ((c → ρ(0)) ∨ (c → ρ(0))) = (((c → ρ(0)) ∨ (c → ρ(0)))∗ )∗ = 1, so (c 

→ ρ(0)) ∨ (c → ρ(0)) = 1 (cf. Lemma 5(3) of [6]). Since 1 ∈ K(A), there exist x, y ∈ K(A) such that x ≤ c 

→ ρ(0), y ≤ d → ρ(0) and x ∨ y = 1. From xc ≤ ρ(0), yd ≤ ρ(0) we get x nc n = 0, y nd n = 0, for some 

integer n ≥ 1 (cf. Lemma 1), hence x n ≤ (c n) ⊥ and y n ≤ (d n) ⊥. By Lemma 2(4) of [6], from x ∨ y = 1 

it results that x n ∨ y n = 1, therefore (c n) ⊥ ∨ (d n) ⊥ = 1. 

(5) ⇒ (1) According to Theorem 3, it suffices to show that L(A) is a conormal lattice. Let x, y ∈ L(A) such 

that x ∧ y = 0, so x = λA(c), y = λA(d), for some c, d ∈ K(A), hence λA(cd) = x ∧ y = 0. By Lemma 1, 

there exists an integer n ≥ 1 such that c nd n = 0, so (c nk) ⊥ ∨ (d nk) ⊥ = 1, for some integer k ≥ 1 

(according to hypothesis (5)). Since (c nk) ⊥ ≤ c nk → ρ(0) and (d nk) ⊥ ≤ d nk → ρ(0), it follows that (c 

nk → ρ(0)) ∨ (d nk → ρ(0)) = 1. We know from Lemma 9(6) of [6] that λA(c nk) = λA(c) and λA(c nk) = 

λA(c). We recall that the map (·) ∗ preserves the joins. 

In accordance with Proposition 3, the following equalities hold: Ann(x)∨Ann(y) = Ann(λA(c))∨Ann(λA(d)) 

= Ann(λA(c nk))∨Ann(λA(d nk)) = (c nk → ρ(0))∗∨(d nk → ρ(0))∗ = ((c nk → ρ(0))∨((d nk → ρ(0)))∗ = 

1∗ = L(A). By applying the implication (4) ⇒ (1) of Theorem 2, it follows that L(A) is a conormal lattice. 

(1) ⇒ (6) Let us denote by V ir(A) the set of pure elements of the quantale A. Recall that the pure elements 

of the frame Id(L(A)) are exactly the σ - ideals of the lattice L(A), so V ir(Id(L(A)) will be the frame of σ - 

ideals the lattice L(A). We recall from [12] that the map w: V ir(A) → V ir(Id(L(A)), defined by w(a) = a ∗ 

for any a ∈ V ir(A), is a frame isomorphism. 

Let p be a minimal m - prime element of A, so p ∗ is a minimal prime ideal of the lattice L(A). Since L(A) 

is a conormal lattice, p ∗ is a σ-ideal of L(A) (cf. Theorem 2. But w is a frame isomorphism, so there exists a 

unique pure element q of A such that p ∗ = w(q) = q ∗. By using Lemma 2, it follows that p = (p ∗)∗ = (q 

∗ )∗ = ρ(q). 

Assume that q1, q2 are pure elements of A such that p = ρ(q1) = ρ(q2). By Lemma 2, it follows that p ∗ = 

(ρ(qi))∗ = q ∗ i , for i = 1, 2. Thus w(q1) = w(q2), hence q1 = q2 (because w is a bijection). 

(6) ⇒ (1) Let p, q be two distinct minimal m - prime elements of A, so there exists c ∈ K(A) such that c ≤ 

p and c 6≤ q. By the hypothesis (6), there exists a unique pure element r such that p = ρ(r). From c ≤ ρ(r) 

we get c n ≤ r, for some integer n ≥ 1 (cf. Lemma 1). But r is pure, so we get r ∨ (c n) ⊥ = 1, therefore we 

obtain p ∨ (c n) ⊥ = 1 (because r ≤ p). Since q is m - prime, c 6≤ q implies c n 6≤ q, hence (c n) ⊥ ≤ q. It 

follows that p ∨ q = 1. According to Theorem 4, it results that A is an mp-quantale. 

The properties (5) and (6) of the previous theorem are the quantale versions of the conditions (5) and (6) of 

Theorem 1. 
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Corollary 3. [13]. The following are equivalent 

A is a P F – quantale. 

A is a semiprime mp – quantale. 

For all c, d ∈ K(A), cd = 0 implies c ⊥ ∨ d ⊥ = 1. 

For all c, d ∈ K(A), (cd) ⊥ = c ⊥ ∨ d ⊥. 

Proof. 

 (1) ⇒ (2) By Lemma 8.17 of [13], A is semiprime, so for any c ∈ K(A), c → ρ(0) = c ⊥ is a pure element, 

so c → ρ(0) is w - pure. By implication (4) ⇔ (1) of Theorem 6, A is an mp-quantale. 

(2) ⇒ (1) Let c be a compact element of A. Since A is a semiprime mp - quantale, c ⊥ = c → ρ(0) is a w 

- pure element (cf. implication (1) ⇒ (4) of Theorem 6). But in a semiprime quantale the pure and w - pure 

elements concide, so c ⊥ is a pure element of A. Thus A is a P F - quantale. 

(1) ⇔ (3) The condition (3) says that for any c ∈ K(A), c ⊥ is a pure element of A. 

(2) ⇒ (4) Since A is semiprime we have ρ(0) = 0, so (4) follows by using the implication (1) ⇒ (3) of 

Theorem 6. 

(4) ⇒ (2) Assume that c n = 0, where c ∈ K(A) and n ≥ 1 is a natural number. By the hypothesis (3), 

from c n = 0 we obtain c ⊥ = (c n) ⊥ = 1, so c ≤ c ⊥⊥ = 0. It result that c = 0, so the quantale A is 

semiprime (by Lemma 1). In this case we have cd → ρ(0) = (cd) ⊥ = c ⊥ ∨ d ⊥ = (c → ρ(0)) ∨ (d → 

ρ(0)). 

By using the implication (3) → (1) of Theorem 6, we conclude that A is an mp - quantale. 

Lemma 9. If p ∈ Spec(A) then ρ(O(p)) ≤ p. 

If p ∈ Spec(A) then p ∈ M in(A) if and only if ρ(O(p)) = p. 

Proof. 

 (1) If p ∈ Spec(A) then ρ(O(p)) ≤ ρ(p) ≤ p. 

(2) Let p be an m - prime element of A. Assume that p ∈ M in(A). Firstly, from (1) we know that ρ(O(p)) 

≤ p. In order to show the converse inequality p ≤ ρ(O(p)), suppose that c ∈ K(A) and c ≤ p. According 

to Proposition 1, c ≤ p implies c → ρ(0) 6≤ p, so there exists d ∈ K(A) such that d ≤ c → ρ(0) and d 6≤ 

p. Applying Lemma 1, from cd ≤ ρ(0) we get c nd n = 0, for some integer n ≥ 1, hence d n ≤ (c n) ⊥. 

Since d 6≤ p and p ∈ Spec(A) we have d n 6≤ p, so (c n) ⊥ ≤ p. By using Lemma 7, it follows that c n ≤ 

O(p), therefore c ≤ ρ(O(p)) (cf. Lemma 1). Conclude that p ≤ ρ(O(p)). 

Now assume that ρ(O(p)) = p. Let us consider a minimal m - prime element q of A such that q ≤ p. We 

want to prove that O(p) ≤ q. For any c ∈ K(A), by using Lemma 7, the following implications hold: c ≤ 

O(p) ⇒ c ⊥ 6≤ p ⇒ c ≤ q. It follows that O(p) ≤ q, so p = ρ(O(p)) ≤ O(q) ≤ q. Thus p = q, therefore p 

is a minimal m - prime element of A. 
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The following result generalizes Theorem 3.2 of [27] to the framework of quantale theory. 

Theorem 7. The following are equivalent 

A is an mp–quantale. 

If p and q are distinct minimal m - prime elements of A then we have O(p) ∨ O(q) = 1. 

For any p ∈ Spec(A), ρ(O(p)) is m – prime. 

For any m ∈ M ax(A), ρ(O(p)) is m – prime. 

If p, q ∈ Spec(A) and p ≤ q then ρ(O(p)) = ρ(O(q)). 

Proof. 

(1) ⇒ (2) Assume that p, q ∈ M in(A) and p 6= q, so p ∨ q = 1 (cf. Theorem 4). By using Lemma 9, we 

have p = ρ(O(p)) and q = ρ(O(q)), hence ρ(O(p))∨ρ(O(q)) = 1. In accordance with Lemma 2.2 of [13], 

it follows that O(p) ∨ O(q) = 1. 

(2) ⇒ (1) Assume that p, q ∈ M in(A) and p 6= q, so O(p) ∨ O(q) = 1. Since O(p) ≤ p and O(q) ≤ q we 

get p ∨ q = 1. By the implication (2) ⇒ (1) of Theorem 4 it follows that A is an mp-quantale. 

(1) ⇒ (3) Suppose that p ∈ Spec(A). In order to show that ρ(O(p)) is m - prime, let c, d be two compact 

elements of A such that cd ≤ ρ(O(p)), so there exists an integer n ≥ 1 such that c nd n ≤ O(p) (cf. Lemma 

1). By Lemma 7 we have (c nd n) ⊥ 6≤ p, so there exists e ∈ K(A) such that e ≤ (c nd n) ⊥ and e 6≤ p. 

Thus ecnedn = 0, hence (ecn → ρ(0)) ∨ (edn → ρ(0)) = 1 (by Theorem 6). Since 1 ∈ K(A) there exist two 

compact elements c and d such that x ≤ ecn → ρ(0), y ≤ edn → ρ(0) and x ∨ y = 1. 

Then xecn ≤ ρ(0) and yedn ≤ ρ(0), so there exists an integer k ≥ 1 such that x k e k c nk = 0 and y k e 

kd nk = 0. By Lemma 2.1of [13], we have x k ∨y k = 1, so x k 6≤ p or y k 6≤ p. Let us assume that x k 

6≤ p, hence x k e k 6≤ p (because e 6≤ p and p ∈ Spec(A) implies e k 6≤ p). From x k e k c nk = 0 we 

get x k e k ≤ (c nk) ⊥, hence (c nk) ⊥ 6≤ p. In virtue of Lemma 7, it follows that c nk ≤ O(p), so c ≤ 

ρ(O(p)) (by Lemma 1). Similarly, y k 6≤ p implies d ≤ ρ(O(p)). Conclude that ρ(O(p) is m - prime. 

(3) ⇒ (4) Obviously. 

(4) ⇒ (1) Suppose that p ∈ Spec(A) and fix a maximal element m such that p ≤ m. Let q be a minimal 

m - prime element such that q ≤ p ≤ m. For any c ∈ K(A) such that c ≤ O(m) we have c ⊥ 6≤ m (by 

Lemma 7), hence c ⊥ 6≤ q. Since q is m - prime it follows that c ≤ q, so we conclude that O(m) ≤ q, so 

ρ(O(m)) ≤ ρ(q) = q. According to the hypothesis (4), ρ(O(m)) is m - prime, therefore q = ρ(O(m)). We 

have proven that there exists a unique minimal m - prime element q such that q ≤ p, so A is an mp - 

quantale. 

(1) ⇒ (5) Assume that p, q ∈ Spec(A) and p ≤ q. Let us consider m ∈ M ax(A) and r ∈ M in(A) such that 

r ≤ p ≤ q ≤ m, hence, by using Lemma 9, we get r = ρ(O(r)) ≤ ρ(O(p)) ≤ ρ(O(q)) ≤ ρ(O(m)). According 

to the proof of the implication (4) ⇒ (1) we have r = ρ(O(m)), so ρ(O(p)) = ρ(O(q)). 

(5) ⇒ (1) Suppose that p ∈ Spec(A) and q1, q2 ∈ M in(A) such that q1 ≤ p and q2 ≤ p. Let m be a 

maximal element of A such that p ≤ m. Applying the hypothesis (5) and Lemma 9 we get q1 = ρ(O(q1)) 

= ρ(O(q2)) = q2, hence there exists a unique minimal m-prime element q of A such that q ≤ p. 
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Now we shall present some consequences of Theorem 7 that extend Corollaries 3.3 of 3.5 of [27]. 

Lemma 10. V {O(m)|m ∈ M ax(A)} = 0. 

Proof. Assume that c ∈ K(A) and c ≤ V {O(m)|m ∈ M ax(A)}. If c ⊥ < 1 then c ⊥ ≤ n, for some n ∈ 

M ax(A). By Lemma 7 we have c 6≤ O(n), contradicting the assumption that c ≤ V {O(m)|m ∈ M 

ax(A)}. Then c ⊥ = 1, hence c ≤ c ⊥⊥ = 0. Thus c = 0, so we conclude that V {O(m)|m ∈ M ax(A)} 

= 0. 

Theorem 8. The following are equivalent 

A is a P F – quantale. 

For any p ∈ Spec(A), O(p) is m – prime. 

For any m ∈ M ax(A), O(p) is m – prime. 

Proof. 

(1) ⇒ (2) Assume that p ∈ K(A) and c, d ∈ K(A) such that cd ≤ O(p), so (cd) ⊥ 6≤ p (cf. Lemma 10). 

By Corollary 3 we have (cd) ⊥ = c ⊥ ∨ d ⊥, so c ⊥ 6≤ p or d ⊥ 6≤ p. By applying again Lemma 10 it 

follows that c ≤ O(p) or d ≤ O(p), so O(p) is m-prime. 

(2) ⇒ (3) Obviously. 

 (3) ⇒ (1) By the hypothesis (3), we have ρ(O(m)) = O(m), for any m ∈ M ax(A). By using Theorem 7 it 

results that A is an mp - quantale. 

We shall prove that A is semiprime. Assume c ∈ K(A) and c ≤ ρ(0), hence c n = 0 for some integer n ≥ 

1 (cf. Lemma 1). Then for each m ∈ M ax(A) we have c n ≤ O(m), hence c ≤ O(m) (because O(m) is m 

- prime). Thus c ≤ V {O(m)|m ∈ M ax(A)} = 0 (by Lemma 10), so c = 0. Thus A is a semiprime mp- 

quantale, so A is a P F - quantale. 

By Theorem 4, we know that for any mp - quantale A, the inclusion M inF (A) ⊆ SpecF (A) has a flat 

continuous retraction. The following result establishes the form of a continuous retraction γ: SpecF (A) 

→ M inF (A) of the inclusion M inF (A) ⊆ SpecF (A) (whenever such retraction exists). 

Proposition 6. If the inclusion M inF (A) ⊆ SpecF (A) has a continuous retraction γ: SpecF (A) → M 

inF (A) then γ(p) = ρ(O(p)), for all P ∈ Spec(A). 

Proof. Let p be an m-prime element of A. Recall from Proposition 5.6 of [13] that the flat closure of 

the set {p} is given by clF ({p}) = Λ(p), where Λ(p) = {s ∈ Spec(A)|q ≤ p}. Assume that q ∈ M in(A) 

and q ≤ p, so q ∈ Λ(p) = clF ({p}) (cf. Proposition 5.6 of [13]). Since the map γ is a continuous retraction 

of the inclusion M inF (A) ⊆ SpecF (A) we have q = γ(q) ∈ clF ({γ(p)}) = Λ(γ(p)) = {γ(p)}, so q = γ(p). 

Thus γ(p) is the unique minimal m - prime element q such that q ≤ p. In particular, we have proven that 

A is an mp - quantale. According to Lemma 9 and Theorem 7, from γ(p) ≤ q it follows that γ(p) = 

ρ(O(γ(p))) = ρ(O(p)). 

From the previous proposition we get the uniqueness of the continuous retraction γ of the inclusion M 

inF (A) ⊆ SpecF (A) (whenever the retraction γ exists). 
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Abstract 

   

1 | Introduction 

Chang [5] introduced the notion of fuzzy topology in 1968 by using the concept of fuzzy sets 

introduced by Zadeh [23] in 1965. Since then, an extensive work on fuzzy topological spaces has 

been carried out by many researchers like Goguen [6], Wong [20], Lowen [14], Warren [19], Hutton 

[8] and others. Separation axioms are important parts in fuzzy topological spaces. Many works on 

separation axioms have been done by researchers. Among those axioms, fuzzy T_0 type is one 

and it has been already introduced in the literature. There are many articles on fuzzy T_0 

topological space which are created by many authors [1], [2], [7], [18], and [22]. The purpose of 

this paper is to further contribute to the development of fuzzy topological spaces specially on 

fuzzy regular T_0 topological spaces. In the present paper, fuzzy regular T_0 topological spaces 

are defined by using quasi‐coincidence sense and relation among the given and other such notions 
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are shown here. It is showed that the good extension property is satisfied on our notions. It is also 

showed that the hereditary, order preserving, productive, and projective properties hold on the new 

concepts. 

In the last section of this paper initial and final fuzzy topological spaces are discussed on author’s 

concept. 

2|Preliminaries  

In this present paper, 𝑋 and 𝑌 always denote non empty sets and = [0,1], 𝐼1 = [0,1). The class of all 

fuzzy sets on a non empty set 𝑋 is denoted by 𝐼𝑋 and fuzzy sets on 𝑋 are denoted as 𝜆, 𝜇, 𝛾 etc. Crisp 

subsets of 𝑋 are denoted by capital letters 𝑈, 𝑉, 𝑊 etc. throughout this paper. 

Definition 1. [23]. A function 𝜆 from 𝑋 into the unit interval 𝐼 is called a fuzzy set in 𝑋. For every 𝑥 ∈

𝑋, 𝜆(𝑥) ∈ 𝐼 is called the grade of membership of 𝑥 in 𝜆. Some authors say that 𝜆 is a fuzzy subset of 𝑋 

instead of saying that 𝜆 is a fuzzy set in 𝑋. The class of all fuzzy sets from 𝑋 into the closed unit interval 

𝐼 will be denoted by 𝐼𝑋. 

Definition 2. [14]. A fuzzy set 𝜆 in 𝑋 is called a fuzzy singleton if and only if (𝑥) = 𝑟, 0 < 𝑟 ≤ 1, for a 

certain 𝑥 ∈ 𝑋 and 𝜆(𝑦) = 0 for all points 𝑦 of 𝑋 except 𝑥. The fuzzy singleton is denoted by 𝑥𝑟 and 𝑥 is 

its support. The class of all fuzzy singletons in 𝑋 will be denoted by (𝑋) . If 𝜆 ∈ 𝐼𝑋 and 𝑥𝑟 ∈ 𝑆(𝑋) , then 

we say that 𝑥𝑟 ∈ 𝜆 if and only if 𝑟 ≤ 𝜆(𝑥). 

Definition 3. [21]. A fuzzy set 𝜆 in 𝑋 is called a fuzzy point if and only if (𝑥) = 𝑟, 0 < 𝑟 < 1, for a 

certain 𝑥 ∈ 𝑋 and 𝜆(𝑦) = 0 for all points 𝑦 of 𝑋 except 𝑥. The fuzzy point is denoted by 𝑥𝑟 and 𝑥 is its 

support. 

Definition 4. [9]. A fuzzy singleton 𝑥𝑟 is said to be quasi‐coincidence with 𝜆, denoted by 𝑥𝑟𝑞𝜆 if and 

only if 𝜆(𝑥) + 𝑟 > 1. If 𝑥𝑟 is not quasi‐coincidence with 𝜆, we write 𝑥𝑟𝑞̅𝜆 and defned as 𝜆(𝑥) + 𝑟 ≤ 1. 

Definition 5. [5]. Let 𝑓 be a mapping from a set 𝑋 into a set 𝑌 and 𝜆 be a fuzzy subset of 𝑋. Then 𝑓 

and 𝜆 induce a fuzzy subset 𝜇 of 𝑌 defined by 

μ(y) = { sup {λ(x)} if ∈ f −1[{y}] ≠ ϕ, x ∈ X,
0 otherwise.

Definition 6. [5]. Let 𝑓 be a mapping from a set 𝑋 into a set 𝑌 and 𝜇 be a fuzzy subset of 𝑌. Then the 

inverse of 𝜇 written as 𝑓−1 (𝜇) is a fuzzy subset of 𝑋 defined by 𝑓−1(𝜇)(𝑥) = 𝜇(𝑓(𝑥)) , for 𝑥 ∈ 𝑋. 

Definition 7. [5]. Let 𝐼 = [0,1], 𝑋 be a non-empty set and 𝐼𝑋 be the collection of all mappings from 𝑋 

into 𝐼, i.e., the class of all fuzzy sets in 𝑋. A fuzzy topology on 𝑋 is defined as a family 𝜏 of members of 

𝐼𝑋, satisfying the following conditions: 

1) 1, 0 ∈ τ. 

2) If λ ∈ τ for each i ∈ Λ, then ⋃ λi
 
i∈Λ ∈ τ, where Λ is an index set. 

3) If λ, μ ∈ τ then λ ∩ μ ∈ τ. 

The pair (𝑋, 𝜏) is called a fuzzy topological space (in short 𝑓𝑡𝑠) and members of 𝜏 are called 𝜏‐open 

fuzzy sets. A fuzzy set 𝜇 is called a 𝜏 -closed fuzzy set if 1 − 𝜇 ∈ 𝜏. 

Definition 8. [4]. A fuzzy subset 𝜆 of a space 𝑋 is called fuzzy regular open (resp. fuzzy regular closed) 

if 𝜆 = 𝑖𝑛𝑡𝑐𝑙(𝐴) (resp. 𝜆 = 𝑐𝑙(𝑖𝑛𝑡(𝜆)). 
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The set of all fuzzy regular open sets (resp. fuzzy regular closed sets) of 𝑋 is denoted by FRO(X) (resp. 

𝐹𝑅𝐶(𝑋)). 

Definition 9. [15]. The function: (𝑋, 𝜏) → (𝑌, 𝜎) is called a  

1) Fuzzy continuous if for every μ ∈ σ, f −1 (μ) ∈ τ. 

2) Fuzzy homeomorphic if f is bijective and both f and f −1 are fuzzy continuous. 

3) Fuzzy regular continuous if for every μ ∈ σ, f −1 (μ) ∈ FRO(X). 

Definition 10. [13]. The function: (𝑋, 𝜏) → (𝑌, 𝜎) is called a 

1) Fuzzy open if for every fuzzy open set λ in (X, τ), f(λ) is fuzzy open set in (Y, σ). 

2) Fuzzy closed if for every closed fuzzy set λ in (X, τ), f(λ) is closed fuzzy set in (Y, σ). 

3) Fuzzy regular open if for every fuzzy open set λ in (X, τ), f(λ) is fuzzy regular open set in (X, σ).  

4) Fuzzy regular closed if for every fuzzy closed set λ in (X, τ) f(λ) is fuzzy regular closed set in (Y, σ). 

Definition 11. [4]. If 𝜆 and 𝜇 are two fuzzy subsets of 𝑋 and 𝑌 respectively then the Cartesian product 

𝜆 × 𝜇 of two fuzzy subsets 𝜆 and 𝜇 is a fuzzy subset of 𝑋 × 𝑌 defined by (𝜆 × 𝜇)(𝑥, 𝑦) =  𝑚𝑖𝑛 (𝜆(𝑥), 𝜇(𝑦)) 

, for each pair (𝑥, 𝑦) ∈ 𝑋 × 𝑌. 

Definition 12. [10]. Let {𝑋𝑖 , 𝑖 ∈ 𝛬}, be any class of sets and let 𝑋 denotes the Cartesian product of these 

sets, i.e., 𝑋 = 𝛱𝑖∈𝛬𝑋𝑖. Note that 𝑋 consists of all points =< 𝑎𝑖 , 𝑖 ∈ 𝛬 >, where 𝑎𝑖 ∈ 𝑋𝑖. Recall that, for each 

𝑗0 ∈ 𝛬, we define the projection 𝜋𝑗0
 from the product set 𝑋 to the coordinate space 𝑋𝑗0

, i.e. 𝜋𝑗0
 : 𝑋 → 𝑋𝑗0

 

by 𝜋𝑗0
(< 𝑎𝑖 , 𝑖 ∈ 𝛬 >) = 𝑎𝑗0

. These projections are used to define the product topology. 

Definition 13. [20]. Let {𝑋𝑖 , 𝑖 ∈ 𝛬} be a family of non-empty sets. Let 𝑋 = 𝛱𝑖∈𝛬𝑋𝑖 be the usual product of 

𝑋𝑖 s and let 𝜋𝑖 be the projection from 𝑋 into 𝑋𝑖. Further assume that each 𝑋𝑖 is an fuzzy topological space 

with fuzzy topology 𝜏𝑖. Now the fuzzy topology generated by {𝜋𝑖
−1(𝑏𝑖) ∶  𝑏𝑖 ∈ 𝜏𝑖 , 𝑖 ∈ 𝛬} as a sub basis, is 

called the product fuzzy topology on 𝑋. Clearly if 𝑤 is a basis element in the product, then there exist 𝑖1, 

𝑖2, 𝑖3, …, ∈ 𝛬 such that 𝑤(𝑥) =  𝑚𝑖𝑛 {𝑏𝑖(𝑥𝑖) ∶  𝑖 = 1,2,3, … , 𝑛}, where 𝑥 = (𝑥𝑖)𝑖∈𝛬 ∈ 𝑋. 

Definition 14. [16]. Let 𝑓 be a real valued function on a topological space. If {𝑥 ∶  𝑓(𝑥) > 𝛼} is open for 

every real 𝛼, then 𝑓 is called lower semi continuous function. 

Definition 15. [11]. Let 𝑋 be a non-empty set and 𝑇 be a topology on 𝑋. Let 𝜏 = 𝜔(𝑇) be the set of all 

lower semi continuous functions from (𝑋, 𝜏) to 𝐼 (with usual topology). Thus 𝜔(𝑇) = {𝑢 ∈ 𝐼𝑋 ∶  𝑢−1(𝛼, 1] ∈

𝑇} for each 𝛼 ∈ 𝐼1. It can be shown that 𝜔(𝑇) is a fuzzy topology on 𝑋. 

Let 𝑃 be the property of a topological space (𝑋, 𝜏) and FP be its fuzzy topological analogue. Then FP is 

called a ‘good extension’ of 𝑃 if and only if the statement (𝑋, 𝜏) has 𝑃 if and only if (𝑋, 𝜔(𝑇)) has FP 

holds good for every topological space (𝑋, 𝜏). 

Definition 16. [12]. The initial fuzzy topology on a set 𝑋 for the family of fuzzy topological space 

{(𝑋𝑖 , 𝜏𝑖)𝑖∈𝛬} and the family of functions {𝑓𝑖 ∶  𝑋 → (𝑋𝑖 , 𝜏𝑖)}𝑖∈𝛬 is the smallest fuzzy topology on 𝑋 making 

each 𝑓𝑖 fuzzy continuous. It is easily seen that it is generated by the family {𝑓𝑖
−1(𝜆𝑖) ∶  𝜆𝑖 ∈ 𝜏𝑖}𝑖∈𝛬. 

Definition 17. [12]. The final fuzzy topology on a set 𝑋 for the family of fuzzy topological spaces 

{(𝑋𝑖 , 𝜏𝑖)𝑖∈𝛬} and the family of functions {𝑓𝑖 ∶  (𝑋𝑖 , 𝜏𝑖) → 𝑋}𝑖∈𝛬 is the finest fuzzy topology on 𝑋 making each 

𝑓𝑖 fuzzy continuous. 

Theorem 1. [3]. A bijective mapping from an fts (𝑋, 𝜏) to an fts (𝑌, 𝜎) preserves the value of a fuzzy 

singleton (fuzzy point). 
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Definition 18. [17]. A fuzzy topological space (𝑋, 𝜏) is called 

1) Fuzzy T0(i) (briefly, T0(i) ) if for any pair xt, yt′ ∈ S(X) with x ≠ y, there exists λ ∈ τ such that 

xtqλ, yt′q̅λ or there exists μ ∈ τ such that yt′qμ, xtqμ. 

2) Fuzzy T0(ii) (briefly, FT0(ii) ) if for any pair xt, yt′ ∈ S(X) with x ≠ y, there exists λ ∈ τ such that 

xtqλ, yt′ ∧ λ = 0 or there exists μ ∈ τ such that yt′qμ, xt ∧ μ = 0. 

3) Fuzzy T0(iii) (briefly, FT0(iii) ) if for any pair x, y ∈ X with x ≠ y, there exists λ ∈ τ such that 

λ(x) = 1, λ(y) = 0 or there exists μ ∈ τ such that μ(y) = 1, μ(x) = 0. 

Note: Preimage of any fuzzy singleton (fuzzy point) under bijective mapping preserves its value. 

3|Regular Fuzzy 𝐓𝟎‐Type Separation Axiom 

In this section, we introduce regular fuzzy 𝑇0-type separation axiom and some well-known properties 

are discussed. 

Definition 19. A fuzzy topological space (𝑋, 𝜏) is called 

1) Regular fuzzy T0(i) (briefy, T0(i) ) if for any pair xt, yt′ ∈ S(X) with   x ≠ y, there exists λ ∈ FRO(X) 

such that xtqλ, yt′q̅λ or there exists μ ∈ FRO(X)  such that yt′qμ, xtqμ. 

2) Regular fuzzy T0(ii) (briefy, RFT0(ii) ) if for any pair xt, yt′ ∈ S(X) with x ≠ y, there exists λ ∈

FRO(X) such that xtqλ, yt′ ∧ λ = 0 or there exists μ ∈ FRO(X) such that yt′qμ, xt ∧ μ = 0. 

3) Regular fuzzy T0(iii) (briefy, RFT0(iii)) if for any pair x, y ∈ X with x ≠ y, there exists λ ∈ FRO(X) 

such that λ(x) = 1, λ(y) = 0 or there exists μ ∈ FRO(X) such that μ(y) = 1, μ(x) = 0. 

Example 1. Let 𝑋 = {𝑎, 𝑏}, 𝜆1 ∈ 𝐹𝑅𝑂(𝑋) , where 𝜆1(𝑎) = 0.9, 𝜆1(𝑏) = 0, 𝜆2(𝑎) = 0, 𝜆2(𝑏) = 1, 𝜆3(𝑎) =

0.9, 𝜆3(𝑏) = 1. Consider the fuzzy topology 𝜏 on 𝑋 generated by {0, 𝜆1, 𝜆2, 𝜆3, 1}. Let 𝑥𝑡 , 𝑦𝑡′ be fuzzy 

points in 𝑋 with 𝑎 ≠ 𝑏. Then 𝜆1(𝑎) + 𝑡 > 1 and 𝜆1(𝑏) + 𝑡′ ≤ 1 for 0. 2 < 𝑡 ≤ 1,0 < 𝑡′ ≤ 1. Therefore 

𝑥𝑡𝑞𝜆1, 𝑦𝑡′𝑞̅𝜆1. This shows that (𝑋, 𝜏) is 𝑇0(𝑖) . Also, as 𝜆1(𝑏) = 0, 𝑦𝑡′ ∧ 𝜆1 = 0. Thus, (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖𝑖). 

Theorem 2. For a fuzzy topological space (𝑋, 𝜏) the following implications are true: 𝑅𝐹𝑇0(𝑖𝑖) ⇒

𝑅𝐹𝑇0(𝑖), 𝑅𝐹𝑇0(𝑖𝑖𝑖) ⇒ 𝑅𝐹𝑇0(𝑖), 𝑅𝐹𝑇0(𝑖𝑖𝑖) ⇒ 𝑅𝐹𝑇0(𝑖𝑖) . But, in general the converse is not true. 

Proof. 𝑅𝐹𝑇0(𝑖𝑖) ⇒ 𝑅𝐹𝑇0(𝑖) : Let (𝑋, 𝜏) be a fuzzy topological space and (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖𝑖) we have to 

prove that (𝑋, 𝜏) is 𝑇0(𝑖) . Let 𝑥𝑡 , 𝑦𝑡′ be fuzzy points in 𝑋 with 𝑥 ≠ 𝑦. Since (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖𝑖) fuzzy 

topological space, we have, there exist 𝜆 ∈ 𝐹𝑅𝑂(𝑋) such that 𝑥𝑡𝑞𝜆, 𝑦𝑡′ ∧ 𝜆 = 0 or there exists 𝜇 ∈

𝐹𝑅𝑂(𝑋) such that 𝑦𝑡′𝑞𝜇, 𝑥𝑡 ∧ 𝜇 = 0. To prove (𝑋, 𝜏) is 𝑇0(𝑖) , it is only needed to prove that 𝑦𝑡′𝑞̅𝜆. 

Now 𝑦𝑡′ ∧ 𝜆 = 0 ⇒ 𝜆(𝑦) = 0 ⇒ 𝜆(𝑦) + 𝑡′ ≤ 1 ⇒ 𝑦𝑡′𝑞̅𝜆. 

It follows that there exists 𝜆 ∈ 𝐹𝑅𝑂(𝑋) such that 𝑥𝑡𝑞𝜆, 𝑦𝑡′𝑞̅𝜆. Hence (𝑋, 𝜏) is 𝑇0(𝑖) . 

To Show (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖) ⇒ (𝑋, 𝜏) is 𝑇0(𝑖𝑖) , we give a counter example. 

Counter example (a). Let 𝑋 = {𝑎, 𝑏}, 𝜆1 ∈ FRO (X), where 𝜆1(𝑎) = 0.9, 𝜆1(𝑏) = 0.1, 𝜆2(𝑎) = 0, 

𝜆2(𝑏) = 1, 𝜆3(𝑎) = 0.9, 𝜆3(𝑏) = 1. Consider the fuzzy topology 𝜏 on 𝑋 generated by {0, 𝜆1, 𝜆2, 𝜆3, 1}. Let 

𝑥𝑡 , 𝑦𝑡′ be fuzzy points in 𝑋 with 𝑎 ≠ 𝑏. Then 𝜆1(𝑎) + 𝑡 > 1 and 𝜆1(𝑏) + 𝑡′ ≤ 1 for 0.2 < 𝑡 ≤ 1,0 < 𝑡′ ≤

1. Therefore 𝑥𝑡𝑞𝜆1, 𝑦𝑡′𝑞̅𝜆1. This shows that (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖). But 𝜆1(𝑏) ≠ 0 ⇒ 𝑦𝑡′ ∧ 𝜆1 ≠ 0. Hence 

(𝑋, 𝜏) is not 𝑅𝐹𝑇0(𝑖𝑖). 

𝑅𝐹𝑇0(𝑖𝑖𝑖) ⇒ 𝑅𝐹𝑇0(𝑖) : Let (𝑋, 𝜏) be a fuzzy topological space and (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖𝑖𝑖) .We have to prove 

that (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖) .Let 𝑥𝑡 , 𝑦𝑡′ be fuzzy points in 𝑋 with 𝑥 ≠ 𝑦. Since (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖𝑖𝑖) fuzzy 
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topological space, we have, there exists 𝜆 ∈ 𝐹𝑅𝑂(𝑋) such that 𝜆(𝑥) = 1, 𝜆(𝑦) = 0 or there exists 𝜇 ∈

𝐹𝑅𝑂(𝑋) such that (𝑦) = 1, 𝜇(𝑥) = 0. To prove (𝑋, 𝜏) is 𝑇0(𝑖) , it is needed to prove that 𝑥𝑡𝑞𝜆, 𝑦𝑡′𝑞̅𝜆. 

Now, 𝜆(𝑥) = 1 ⇒ 𝜆(𝑥) + 𝑡 > 1, for any 𝑡 ∈ (0,1] ⇒ 𝑥𝑡𝑞𝜆 and 𝜆(𝑦) = 0 ⇒ 𝜆(𝑦) + 𝑡′ ≤ 1, for any 𝑡′ ∈ (0,1] 

⇒ 𝑦𝑡′𝑞̅𝜆. 

It follows that there exist 𝜆 ∈ 𝐹𝑅𝑂(𝑋) such that 𝑥𝑡𝑞𝜆, 𝑦𝑡′𝑞̅𝜆. Hence (𝑋, 𝜏) is 𝑇0(𝑖). 

To show (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖) ⇒ (𝑋, 𝜏) is 𝑇0(𝑖𝑖𝑖) , we give a counter example. 

Counter example (b). Consider the Counter example (a), 𝜆1(𝑎) ≠ 1 which implies (𝑋, 𝜏) is not 𝑇0(𝑖𝑖𝑖). 

𝑅𝐹𝑇0(𝑖𝑖𝑖) ⇒ 𝑅𝐹𝑇0(𝑖𝑖): Let (𝑋, 𝜏) be a fuzzy topological space and (𝑋, 𝜏) is 𝑇0(𝑖𝑖𝑖) . We have to prove that 

(𝑋, 𝜏) is 𝑇0(𝑖𝑖). Let 𝑥𝑡 , 𝑦𝑡′ be fuzzy points in 𝑋 with 𝑥 ≠ 𝑦. Since (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖𝑖𝑖) fuzzy topological space, 

we have, there exist 𝜆 ∈ 𝐹𝑅𝑂(𝑋) such that 𝜆(𝑥) = 1, 𝜆(𝑦) = 0 or there exists 𝜇 ∈ 𝐹𝑅𝑂(𝑋) such that (𝑦) =

1, 𝜇(𝑥) = 0. To prove (𝑋, 𝜏) is 𝑇0(𝑖𝑖) , it is needed to prove that 𝑥𝑡𝑞𝜆, 𝑦𝑡′ ∧ 𝜆 = 0. 

Now, 𝜆(𝑥) = 1 ⇒ 𝜆(𝑥) + 𝑡 > 1, for any 𝑡 ∈ (0,1] ⇒ 𝑥𝑡𝑞𝜆 and 𝜆(𝑦) = 0 ⇒ 𝑦𝑡′ ∧ 𝜆 = 0. 

It follows that there exist 𝜆 ∈ 𝐹𝑅𝑂(𝑋) such that 𝑥𝑡𝑞𝜆, 𝑦𝑡′ ∧ 𝜆 = 0. Hence (𝑋, 𝜏) is 𝑇0(𝑖𝑖). 

To show (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖𝑖) ⇒ (𝑋, 𝜏) is 𝑇0(𝑖𝑖𝑖) , we give a counter example. 

Counter example (c). In Example 1, 𝜆1(𝑎) ≠ 1, 𝜆1(𝑏) = 0, therefore (𝑋, 𝜏) is not 𝑅𝐹𝑇0(𝑖𝑖𝑖). 

From the above definitions and examples, it is clear that the following implications is true but the converse 

of the implications is not true as shown by the following example. 

 

 

Example 2. Let = {𝑎, 𝑏}, 𝜆 ∈ 𝜏, where 𝜆(𝑎) = 1, 𝜆(𝑏) = 0. Consider the fuzzy topology 𝜏 on 𝑋 generated 

by {0, 𝜆, 1}. Let 𝑥𝑡 , 𝑦𝑡′ be fuzzy points in 𝑋 with 𝑎 ≠ 𝑏. Then 𝜆(𝑎) + 𝑡 > 1 and 𝜆(𝑏) + 𝑡′ ≤ 1 for , 𝑡′ ∈

(0,1]. Therefore 𝑥𝑡𝑞𝜆, 𝑦𝑡′𝑞̅𝜆. (i) This shows that (𝑋, 𝜏) is 𝐹𝑇0(𝑖) but it is not 𝑅𝐹𝑇0(𝑖) since 𝜆 is not 

regular open. (ii) as 𝜆(𝑏) = 0, 𝑦𝑡′ ∧ 𝜆 = 0 is 𝐹𝑇0(𝑖𝑖) but it is not 𝑅𝐹𝑇0(𝑖𝑖) . Also (iii) as 𝜆(𝑎) = 1, 𝜆(𝑏) = 0 

is 𝐹𝑇0(𝑖𝑖𝑖) but it is not 𝑇0(𝑖𝑖𝑖). 

Now, we shall show that our notions satisfy the good extension property. 

Theorem 3. Let (𝑋, 𝑇) be a topological space. Consider the following statements: 

1)  (X, T) be a RT0-topological space. 

2)  (X, ω(T)) be an RFT0(i) space. 

3)  (X, ω(T)) be an RFT0(ii) space. 

Then the following implications are true. (1) ⇔ (2) and (1) ⇔ (3) . 
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Proof. 

 (1) ⇒ (2). Let (𝑋, 𝑇) be a topological space and (𝑋, 𝑇) is 𝑅𝑇0. We have to prove that (𝑋, 𝜔(𝑇)) is 𝑇0(𝑖) 

. Let 𝑥𝑡 , 𝑦𝑡′ be fuzzy points in 𝑋 with 𝑥 ≠ 𝑦. Since (𝑋, 𝑇) is 𝑅𝑇0 topological space, we have, there exists 

𝑈 ∈ 𝑇 such that ∈ 𝑈, 𝑦 ∉ 𝑈. From the definition of lower semi continuous we have 1𝑈 ∈ 𝜔(𝑇) and 

1𝑈(𝑥) = 1, 1𝑈(𝑦) = 0. Then 1𝑈(𝑥) + 𝑡 > 1 ⇒ 𝑥𝑡𝑞1𝑈 and 1𝑈(𝑦) + 𝑡′ ≤ 1 ⇒ 𝑦𝑡′𝑞̅1𝑈. It follows that there 

exists 1𝑈 ∈ 𝜔(𝑇) such that 𝑥𝑡𝑞1𝑈 , 𝑦𝑡′𝑞̅1𝑈 . Hence (𝑋, 𝜔(𝑇)) is 𝑇0(𝑖) . Thus (1) ⇒ (2) holds. 

(2) ⇒ (1). Let (𝑋, 𝜔(𝑇)) be a fuzzy topological space and (𝑋, 𝜔(𝑇)) is 𝑇0(𝑖). We have to prove that (𝑋, 𝑇) 

is 𝑅𝑇0. Let 𝑥, 𝑦 be points in 𝑋 with 𝑥 ≠ 𝑦. Since (𝑋, 𝜔(𝑇)) is 𝑅𝐹𝑇0(𝑖) topological space, we have, for 

any fuzzy points 𝑥𝑡 , 𝑦𝑡′ in 𝑋, there exists 𝜆 ∈ 𝐹𝑅𝑂(𝑋) such that 𝑥𝑡𝑞𝜆, 𝑦𝑡′𝑞̅𝜆 or there exist 𝜇 ∈ 𝐹𝑅𝑂(𝑋) 

such that 𝑦𝑡′𝑞𝜇, 𝑥𝑡𝑞𝜇. 

Now, 𝑥𝑡𝑞𝜆 ⇒ 𝜆(𝑥) + 𝑡 > 1 ⇒ 𝜆(𝑥) > 1 − 𝑡 = 𝛼 ⇒ 𝑥 ∈ 𝜆−1(𝛼, 1] and 𝑦𝑡′𝑞̅𝜆 ⇒ 𝜆(𝑦) + 𝑡 ≤ 1 ⇒

𝜆(𝑦) ≤ 1 − 𝑡 = 𝛼 ⇒ 𝜆(𝑦) ≤ 𝛼 ⇒ 𝑦 ∉ 𝜆−1(𝛼, 1]. 

Also, 𝜆−1(𝛼, 1] ∈ 𝑇. It follows that ∃𝜆−1(𝛼, 1] ∈ 𝑇 such that 𝑥 ∈ 𝜆−1(𝛼, 1], 𝑦 ∉ 𝜆−1(𝛼, 1]. Thus (2) ⇒ (1) 

holds. Similarly, we can prove that (1) ⇔ (3). 

Now, we shall show that the hereditary property is satisfed on our notions. 

Theorem 4. Let (𝑋, 𝜏) be a fuzzy topological space, 𝐵 ⊆ 𝑋, 𝜏𝐵 = {𝜆/𝐵 : 𝜆 ∈ 𝜏}, then 

1) (X, τ) is RFT0(i) ⇒ (B, τB) is RFT0(i). 

2) (X, τ) is RFT0(ii) ⇒ (B, τB) is RFT0(ii). 

Proof (1). Let (𝑋, 𝜏) be a fuzzy topological space and (𝑋, 𝜏) is 𝑇0(𝑖). We have to prove that (𝐵, 𝜏𝐵) is 𝑇0(𝑖). 

Let 𝑥𝑡 , 𝑦𝑡′ be fuzzy points in 𝐵 with 𝑥 ≠ 𝑦. Since 𝐵 ⊆ 𝑋, these fuzzy points are also fuzzy points in 𝑋. 

Also, since (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖) fuzzy topological space, we have, there exists 𝜆 ∈ 𝐹𝑅𝑂(𝑋) such that 𝑥𝑡𝑞𝜆, 

𝑦𝑡′𝑞̅𝜆 or there exists 𝜇 ∈ 𝐹𝑅𝑂(𝑋) such that 𝑦𝑡′𝑞𝜇, 𝑥𝑡𝑞𝜇. For 𝐵 ⊆ 𝑋, we have 𝜆/𝐵 ∈ 𝐹𝑅𝑂(𝑋). 

Now, 𝑥𝑡𝑞𝜆 ⇒ 𝜆(𝑥) + 𝑡 > 1, 𝑥 ∈ 𝑋 ⇒ 𝜆/𝐵(𝑥) + 𝑡 > 1, 𝑥 ∈ 𝐵 ⊆ 𝑋 ⇒ 𝑥𝑡𝑞𝜆/𝐵 and 𝑦𝑡′𝑞̅𝜆 ⇒ 𝜆(𝑦) + 𝑡′ ≤ 1, 

𝑦 ∈ 𝑋 ⇒ 𝜆/𝐵(𝑦) + 𝑡′ ≤ 𝑞, 𝑦 ∈ 𝐵 ⊆ 𝑋 ⇒ 𝑦𝑡′𝑞̅𝜆/𝐵. 

Hence, (𝐵, 𝜏𝐵) is 𝑇0(𝑖) . Proof of (2) is similar to proof of (1).  

Then, we discuss the productive and projective properties on our concepts. 

Theorem 5. Let (𝑋𝑖 , 𝜏𝑖), 𝑖 ∈ 𝛬 be fuzzy topological spaces and 𝑋 = 𝛱𝑖∈𝛬𝑋𝑖 and 𝜏 be the product topology 

on 𝑋, then 

3) for all i ∈ Λ, (Xi, τi) is RFT0(i) if and only if (X, τ) is RFT0(i). 

4) for all i ∈ Λ, (Xi, τi) is RFT0(ii) if and only if (X, τ) is RFT0(ii). 

Proof 2. Let for all 𝑖 ∈ 𝛬, (𝑋𝑖 , 𝜏𝑖) is 𝑅𝐹𝑇0(𝑖𝑖) space. We have to prove that (𝑋, 𝜏) is 𝑇0(𝑖𝑖). Let 𝑥𝑡 , 𝑦𝑡′ be 

fuzzy points in 𝑋 with 𝑥 ≠ 𝑦. Then (𝑥𝑖)𝑡 , (𝑦𝑖)𝑡′ are fuzzy points with 𝑥𝑖 ≠ 𝑦𝑖 for some 𝑖 ∈ 𝛬. Since 

(𝑋𝑖 , 𝜏𝑖) is 𝑇0(𝑖𝑖), there exists 𝜆𝑖 ∈ 𝐹𝑅𝑂(𝑋𝑖) such that (𝑥𝑖)𝑡𝑞𝜆𝑖 , (𝑦𝑖)𝑡′ ∧ 𝜆𝑖 = 0 or there exists 𝜇𝑖 ∈ 𝐹𝑅𝑂(𝑋𝑖) 

such that (𝑦𝑖)𝑡′𝑞𝜇𝑖 , (𝑥𝑖)𝑡 ∧ 𝜇𝑖 = 0. But we have 𝜋𝑖(𝑥) = 𝑥𝑖 and 𝜋𝑖(𝑦) = 𝑦𝑖 . 

Now, (𝑥𝑖)𝑡𝑞𝜆𝑖 ⇒ 𝜆𝑖(𝑥𝑖) + 𝑡 > 1, 𝑥 ∈ 𝑋 ⇒ 𝜆𝑖(𝜋𝑖(𝑥)) + 𝑡 > 1 ⇒ (𝜆𝑖 ∘ 𝜋𝑖)(𝑥) + 𝑡 > 1 ⇒ 𝑥𝑡𝑞(𝑢𝑖 ∘ 𝜋𝑖) and 

(𝑦𝑖)𝑡′ ∧ 𝜆𝑖 = 0 ⇒ 𝜆𝑖(𝑦𝑖) = 0, 𝑦 ∈ 𝑋 ⇒ 𝜆𝑖(𝜋𝑖(𝑦)) = 0, 𝑦 ∈ 𝑋 ⇒ (𝜆𝑖 ∘ 𝜋𝑖)(𝑦) = 0 ⇒ 𝑦𝑡′ ∧ (𝜆𝑖 ∘ 𝜋𝑖) = 0. 

It follows that there exists (𝜆𝑖  ∘ 𝜋𝑖) ∈ 𝑡𝑖 such that 𝑥𝑡𝑞(𝜆𝑖  ∘ 𝜋𝑖), 𝑦𝑡′ ∧ (𝜆𝑖 ∘ 𝜋𝑖) = 0. Hence, (𝑋, 𝜏) is 𝑇0(𝑖𝑖). 
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Conversely, let (𝑋, 𝜏) be a fuzzy topological space and (𝑋, 𝜏) is 𝑇0(𝑖𝑖) . We have to prove that (𝑋𝑖 , 𝜏𝑖), 𝑖 ∈ 𝛬 

is 𝑇0(𝑖𝑖) . Let 𝑎𝑖 be a fxed element in 𝑋𝑖. Let 𝐴𝑖 = {𝑥 ∈ 𝑋 = 𝛱𝑖∈𝛬𝑋𝑖: 𝑥𝑗 = 𝑎𝑗 for some 𝑖 ≠ 𝑗}. Then 𝐴𝑖 is a 

subset of 𝑋, and hence (𝐴𝑖 , 𝜏𝐴𝑖
) is a subspace of (𝑋, 𝜏) . Since (𝑋, 𝜏) is 𝑇0(𝑖𝑖) , so (𝐴𝑖 , 𝜏𝐴𝑖

) is 𝑅𝐹𝑇0(𝑖𝑖) . Now 

we have 𝐴𝑖 is homeomorphic image of 𝑋𝑖. Hence it is clear that for all 𝑖 ∈ 𝛬, (𝑋𝑖 , 𝜏𝑖) is 𝑅𝐹𝑇0(𝑖𝑖) space. Thus 

(2) holds. Proof of (1) is similar to proof of (2). 

Now, we shall show that our notions satisfy the order preserving property. 

Theorem 6. Let (𝑋, 𝜏) and (𝑌, 𝜎) be two fuzzy topological spaces and: 𝑋 → 𝑌 be a one‐one, onto and 

regular open map then, 

1) (X, τ) is RFT0(i) ⇒ (Y, σ) is RFT0(i). 

2) (X, τ) is RFT0(ii) ⇒ (Y, σ) is RFT0(ii) . 

Proof 1. Let (𝑋, 𝜏) be a fuzzy topological space, and (𝑋, 𝜏) is 𝑇0(𝑖) . We have to prove that (𝑌, 𝜎) is 𝑇0(𝑖) . 

Let 𝑥𝑡 , 𝑦𝑡 , be fuzzy points in 𝑌 with 𝑥′ ≠ 𝑦′. Since 𝑓 is onto then there exist 𝑥, 𝑦 ∈ 𝑋 with 𝑓(𝑥) = 𝑥′, 

𝑓(𝑦) = 𝑦′ and 𝑥𝑡 , 𝑦𝑡′ are fuzzy points in 𝑋 with 𝑥 ≠ 𝑦 as 𝑓 is one‐one. Again since (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖) space, 

there exists 𝜆 ∈ 𝐹𝑅𝑂(𝑋) such that 𝑥𝑡𝑞𝜆, 𝑦𝑡′𝑞̅𝜆 or there exists 𝜇 ∈ 𝐹𝑅𝑂(𝑋) such that 𝑦𝑡′𝑞𝜇, 𝑥𝑡𝑞𝜇. 

Now, 𝑥𝑡𝑞𝜆 ⇒ 𝜆(𝑥) + 𝑡 > 1 and 𝑦𝑡′𝑞̅𝜆 ⇒ 𝜆(𝑦) + 𝑡′ ≤ 1. 

Now, (𝜆)(𝑥′) = { 𝑠𝑢𝑝 𝜆(𝑥): 𝑓(𝑥) = 𝑥′} ⇒ 𝑓(𝜆)(𝑥′) = 𝜆(𝑥) , for some 𝑥 and (𝜆)(𝑦′) = { 𝑠𝑢𝑝 𝜆(𝑦) ∶  𝑓(𝑦) =

𝑦′} ⇒ 𝑓(𝜆)(𝑦′) = 𝜆(𝑦) , for some 𝑦. 

Also, since 𝑓 is regular open map then 𝑓(𝜆) ∈ 𝐹𝑅𝑂(𝑌) as 𝜆 ∈ 𝜏. 

Again, 𝜆(𝑥) + 𝑡 > 1 ⇒ 𝑓(𝜆)(𝑥′) + 𝑡 > 1 ⇒ 𝑥′
𝑡𝑞𝑓(𝜆) and, 𝜆(𝑦) + 𝑡′ ≤ 1 ⇒ 𝑓(𝜆)(𝑦′) + 𝑡′ ≤ 1 ⇒ 𝑦′𝑡́ , 𝑞𝑓(𝜆). 

It follows that there exists 𝑓(𝜆) ∈ 𝐹𝑅𝑂(𝑌) such that 𝑥′𝑡𝑞𝑓(𝜆), 𝑦′𝑡́ , 𝑞𝑓(𝜆)′. Hence, it is clear that (𝑌, 𝜎) is 

𝑅𝐹𝑇0(𝑖) space. Proof of (2) is similar to proof of (1).  

Theorem 7. Let (𝑋, 𝜏) and (𝑌, 𝜎) be two fuzzy topological spaces and: 𝑋 → 𝑌 be a one‐one, onto and 

regular continuous map then, 

1) (Y, σ) is RFT0(i) ⇒ (X, τ) is RFT0(i). 

2) (Y, σ) is RFT0(ii) ⇒ (X, τ) is RFT0(ii). 

Proof 2. Let (𝑌, 𝜎) be a fuzzy topological space and (𝑌, 𝜎) is 𝑇0(𝑖𝑖). We have to prove that (𝑋, 𝜏) is 𝑇0(𝑖𝑖).  

Let 𝑥𝑡 , 𝑦𝑡′ be fuzzy points in 𝑋 with 𝑥 ≠ 𝑦. Then (𝑓(𝑥))𝑡 , (𝑓(𝑦))𝑡′ are fuzzy points in 𝑌 with 𝑓(𝑥) ≠ 𝑓(𝑦) 

as 𝑓 is one‐one. Again, since (𝑌, 𝜎) is 𝑅𝐹𝑇0(𝑖𝑖) space, there exists 𝜆 ∈ 𝐹𝑅𝑂(𝑌) such that (𝑓(𝑥))𝑡𝑞𝜆, 

(𝑓(𝑦))𝑡′ ∧ 𝜆 = 0 or there exist 𝜇 ∈ 𝐹𝑅𝑂(𝑌) such that (𝑓(𝑦))𝑡′𝑞𝜇, (𝑓(𝑥))𝑡 ∧ 𝜇 = 0. 

Now, (𝑓(𝑥))𝑡𝑞𝜆 ⇒ 𝜆(𝑓(𝑥)) + 𝑡 > 1 ⇒ 𝑓−1(𝜆(𝑥)) + 𝑡 > 1 ⇒ (𝑓−1(𝜆))(𝑥) + 𝑡 > 1 ⇒ 𝑥𝑡𝑞𝑓−1(𝜆) and, 

(𝑓(𝑦))𝑡′ ∧ 𝜆 = 0 ⇒ 𝜆(𝑓(𝑦)) = 0 ⇒ 𝑓−1(𝜆(𝑦)) = 0 ⇒ (𝑓−1(𝜆))(𝑦) = 0 ⇒ 𝑦𝑡′ ∧ 𝑓−1(𝜆) = 0. 

Now, since 𝑓 is regular continuous map and 𝜆 ∈ 𝜎 then 𝑓−1(𝜆) ∈ 𝐹𝑅𝑂(𝑋) . It follows that there exist 

𝑓−1(𝜆) ∈ 𝐹𝑅𝑂(𝑋) such that 𝑥𝑡𝑞𝑓−1(𝜆), 𝑦𝑡′ ∧ 𝑓−1(𝜆) = 0. Hence it is clear that (𝑋, 𝜏) is 𝑅𝐹𝑇0(𝑖𝑖) space. 

Proof of (1) is similar to proof of (2). 

Theorem 8. If {(𝑋𝑖 , 𝜏𝑖)}𝑖∈𝛬 is a family of 𝑅𝐹𝑇0(𝑖𝑖) fts and {𝑓𝑖 : 𝑋 → (𝑋𝑖 , 𝜏𝑖)}𝑖∈𝛬, a family of one‐one and 

fuzzy regular continuous functions, then the initial fuzzy topology on 𝑋 for the family {𝑓𝑖}𝑖∈𝛬 is 𝑅𝐹𝑇0(𝑖𝑖). 
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Proof. Let 𝜏 be the initial fuzzy topology on 𝑋 for the family {𝑓𝑖}𝑖∈𝛬. Let 𝑥𝑡 , 𝑦𝑡′ be fuzzy points in 𝑋 

with 𝑥 ≠ 𝑦. Then 𝑓𝑖(𝑥), 𝑓𝑖(𝑦) ∈ 𝑋𝑖 and 𝑓𝑖(𝑥) ≠ 𝑓𝑖(𝑦) as 𝑓𝑖 is one‐one. Since (𝑋𝑖 , 𝜏𝑖) is 𝑇0(𝑖𝑖) , then for 

every two distinct fuzzy points (𝑓𝑖(𝑥))𝑡 , (𝑓𝑖(𝑦))𝑡′ in 𝑋𝑖, there exists regular fuzzy sets 𝜆𝑖 or 𝜇𝑖 ∈ 𝐹𝑅𝑂(𝑋𝑖) 

such that (𝑓𝑖(𝑥))𝑡𝑞𝜆𝑖, (𝑓𝑖(𝑦))𝑡′ ∧ 𝜆𝑖 = 0 or (𝑓𝑖(𝑦))𝑡′𝑞𝜇𝑖, (𝑓𝑖(𝑥))𝑡 ∧ 𝜇𝑖 = 0. 

Now, (𝑓𝑖(𝑥))𝑡𝑞𝜆𝑖 and (𝑓𝑖(𝑦))𝑡′ ∧ 𝜆𝑖 = 0. That is 𝜆𝑖(𝑓𝑖(𝑥)) + 𝑡 > 1 and 𝜆𝑖(𝑓𝑖(𝑦)) = 0. That is 

𝑓𝑖
−1(𝜆𝑖)(𝑥) + 𝑡 > 1 and 𝑓𝑖

−1(𝜆𝑖)(𝑦) = 0. 

This is true for every 𝑖 ∈ 𝛬. So,  inf fi
−1(λi)(x) + t > 1 and  inf fi

−1(λi)(y) = 0. Let =  𝑖𝑛𝑓 𝑓𝑖
−1(𝜆𝑖) . Then 

𝜆 ∈ 𝐹𝑅𝑂(𝑋) as 𝑓𝑖 is fuzzy regular continuous. So, 𝜆(𝑥) + 𝑡 > 1 and 𝜆(𝑦) = 0. Hence, 𝑥𝑡𝑞𝜆 and 𝑦𝑡′ ∧ 𝜆 =

0. Therefore, (𝑋, 𝜏) is must 𝑇0(𝑖𝑖). Thus, the proof is complete. 

Theorem 9. If {(𝑋𝑖 , 𝜏𝑖)}𝑖∈𝛬 is a family of 𝑅𝐹𝑇0(𝑖𝑖) fts and {𝑓𝑖(𝑋𝑖 , 𝜏𝑖) → 𝑋}𝑖∈𝛬, a family of fuzzy regular 

open and bijective function, then the fnal fuzzy topology on 𝑋 for the family {𝑓𝑖}𝑖∈𝛬 is 𝑅𝐹𝑇0(𝑖𝑖). 

Proof. Let 𝜏 be the fnal fuzzy topology on 𝑋 for the family {𝑓𝑖}𝑖∈𝛬. Let 𝑥𝑡 , 𝑦𝑡′ be fuzzy points in 𝑋 with 

𝑥 ≠ 𝑦. Then 𝑓𝑖
−1(𝑥), 𝑓𝑖

−1(𝑦) ∈ 𝑋𝑖 and 𝑓𝑖
−1(𝑥) ≠ 𝑓𝑖

−1(𝑦) as 𝑓𝑖 is bijective. Since (𝑋𝑖 , 𝜏𝑖) is 𝑇0(𝑖𝑖) , then for 

every two distinct fuzzy points (𝑓𝑖
−1(𝑥))𝑡 , (𝑓𝑖

−1(𝑦))𝑡′ in 𝑋𝑖, there exists regular fuzzy sets 𝜆𝑖 or 𝜇𝑖 ∈ 

𝐹𝑅𝑂(𝑋𝑖) such that (𝑓𝑖
−1(𝑥))𝑡𝑞𝜆𝑖 , (𝑓𝑖

−1(𝑦))𝑡′ ∧ 𝜆𝑖 = 0 or (𝑓𝑖
−1(𝑦))𝑡′𝑞𝜇𝑖 , (𝑓𝑖

−1(𝑥))𝑡 ∧ 𝜇𝑖 = 0. 

Now, (𝑓𝑖
−1(𝑥))𝑡𝑞𝜆𝑖 and (𝑓𝑖

−1(𝑦))𝑡′ ∧ 𝜆𝑖 = 0. That is 𝜆𝑖(𝑓𝑖
−1(𝑥)) + 𝑡 > 1 and 𝜆𝑖(𝑓𝑖

−1(𝑦)) = 0. That is 

𝑓𝑖(𝜆𝑖)(𝑥) + 𝑡 > 1 and 𝑓𝑖(𝜆𝑖)(𝑦) = 0. 

This is true for every 𝑖 ∈ 𝛬. So,  𝑖𝑛𝑓 𝑓𝑖(𝜆𝑖)(𝑥) + 𝑡 > 1 and  inf fi(λi)(y) = 0. Let =  𝑖𝑛𝑓 𝑓𝑖(𝜆𝑖) . Then 𝜆 ∈

𝐹𝑅𝑂 (X) as 𝑓𝑖 is fuzzy regular open. So, 𝜆(𝑥) + 𝑡 > 1 and 𝜆(𝑦) = 0. Hence, 𝑥𝑡𝑞𝜆 and 𝑦𝑡′ ∧ 𝜆 = 0. 

Therefore, (𝑋, 𝜏) is must 𝑇0(𝑖𝑖). Thus, the proof is complete. 

4 |Conclusion 

In this paper, we introduce and study notion of 𝑅𝑇0 separation axiom in fts in quasi-coincidence sense. 

We have shown that all of our concepts are good extension of their counterparts and are stronger than 

other such notion. Further, we have shown that hereditary, productive, projective and other preserving 

properties hold on our concepts. Finally, initial and final fuzzy topologies are studied on one of our 

notions. We hope that the results of this paper will aid researchers in developing a general structure for 

fuzzy mathematics expansion. 
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Abstract 

1 | Introduction 

It is well recognized that intelligent decision support systems and technologies have been playing 

an important role in improving almost every aspect of human society. Intensive study over the 

past several years has resulted in significant progress in both the theory and applications of 

optimization and decision sciences. 

Optimization and decision-making problems are traditionally handled by either the deterministic 

or the probabilistic approach. When working with complex systems in parallel with classical 

approaches of their modelling, the most important matter is to assume fuzziness ([3], [6], [13], 

[15]-[32], [35]-[43], [49]-[62] and others). All this is connected to the complexity of study of 

complex and vague processes and events in nature and society, which are caused by lack or 
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shortage of objective information and when expert data are essential for construction of credible decisions. 

With the growth of complexity of information our ability to make credible decisions from possible 

alternatives with complex states of nature reduces to some level, below which some dual characteristics 

such as precision and certainty become mutually conflicting ([3], [11], [20]-[22], [36]-[38], [41], [49], [51], 

[54], [55] and others). When working on real, complex decision systems using an exact or some stochastic 

quantitative analysis is often less convenient, concluding that the use of fuzzy methods is necessary, 

because systems approach for development of information structure of investigated decision system [20], 

[36], [37] with combined fuzzy-stochastic uncertainty enables us to construct convenient intelligent 

decision support instruments. Obviously, the source for obtaining combined objective + fuzzy + stochastic 

samplings is the populations of fuzzy-characteristics of expert’s knowledge ([22], [36], [38], [42], [51] and 

others). Our research is concerned with quantitative-information analysis of the complex uncertainty and 

its use for modelling of more precise decisions with minimal decision risks from the point of view of 

systems research. The main objects of our attention are 1) the analysis of Information Structures of expert’s 

knowledge, its uncertainty measure and imprecision variable and 2) the construction of instruments of 

aggregation operators, which condense both characteristics of incomplete information - an uncertainty 

measure and an imprecision variable in the scalar ranking values of possible alternatives in the decision-

making system. The first problem is considered in this paper. The second problem will be presented in the 

Parts II and III of this work. 

Making decisions under uncertainty is a pervasive task faced by many Decision-Making Persons (DMP), 

experts, investigators or others. The main difficulty is that a selection must be made between alternatives 

in which the choice of alternative doesn’t necessarily lead to well determined payoffs (experts’ valuations, 

utilities and so on) to be received as a result of selecting an alternative. In this case DMP is faced with the 

problem of comparing multifaceted objects whose complexity often exceeds his/her ability to compare of 

uncertain alternatives. One approach to addressing this problem is to use valuation functions (or 

aggregation operators). These valuation functions convert the multifaceted uncertain outcome associated 

with an alternative into a single (scalar) value. This value provides a characterization of the DMP or expert 

perception of the worth the possible uncertain alternative being evaluated. The problems of Decision 

Making Under Uncertainty (DMUU) [51] were discussed and investigated by many well-known authors 

([1]-[6], [9], [10], [13], [15]-[18], [23]-[60], [62] and others). In this work our focus is directed on the 

construction of new generalizations of the aggregation Ordered Weighted Averaging (OWA) operator in 

the fuzzy-probabilistic uncertainty environment. 

In Section 2 some preliminary concepts are presented on the OWA operator; on the arithmetic of the 

triangular fuzzy numbers; on some extensions of the OWA operator – POWA and FPOWA operators in 

the probabilistic uncertainty (developed by Merigo [26] and [27]) and their information measures (see 

Section 3). In Section 4 a new conceptual Information Structure (IS) of a General Decision-Making System 

(GDMS) with fuzzy-probabilistic uncertainty is defined. This IS classifying some aggregation operators 

and new generalizations of the OWA operator defined in the parts II and III of this work. 

2|On the OWA Operator and Its Some Fuzzy-Probabilistic 

Generalizations 

In this type of problem, the DMP has a collection  1 2 nD {d ,d , ...,d }  of possible uncertain alternatives from 

which he must select one or some ranking of decisions by some expert’s preference relation values. 

Associated with this problem is a variable of characteristics, activities, symptoms and so on, which acts on 

the decision procedure. This variable is normally called the state of nature, which affects the payoff, utilities, 

valuations and others to the DMP’s preferences or subjective activities. This variable is assumed to take its 

values (states of nature) from some set { , , ..., } 1 2 mS s s s . As a result, the DMP knows that if he selects di 

and the state of nature assumes the value sj then his payoff (valuation, utility and so on) is aij. The objective 

of the decision is to select the “best” alternative, get the biggest payoff (valuation, utility and so on). But 

in DMUU [51] the selection procedure becomes more difficult. In this case each alternative can be seen as 



 

 

132 

S
ir

b
il

a
d

z
e
 |

J.
 F

u
z
z
y
. 

E
x

t.
 A

p
p

l.
 2

(2
) 

(2
0
2
1)

 1
3
0
-1

4
3

 

 

corresponding to a row vector of possible payoffs. To make a choice the DMP must compare these 

vectors, a problem which generally doesn’t lead to a compelling solution. Assume di and dk are two 

alternatives such that for all  ij kjj , j 1,2, ...,m  a a (Table 1). In this case there is no reason to select dk. 

In this situation we shall say di dominates
k i kd ( d d )f . Furthermore, if there exists one alternative that 

dominates all the alternatives then it will be optimal solution and as a result, we call this the Pareto 

optimal. Faced with the general difficulty of comparing vector payoffs we must provide some means of 

comparing these vectors. Our focus in this work is on the construction of valuation function 

(aggregation operator) F that can take a collection of m values and convert it into a single value,  

m 1F : R R .  

Once we apply this function to each of the alternatives, we select the alternative with the largest scalar 

value. The construction of F involves considerations of two aspects. The first being the satisfaction of 

some rational, objective properties naturally required of any function used to convert (aggregate) a vector 

of payoffs (valuations, utilities and so on) into an equivalent scalar value. The second aspect being the 

inclusion of characteristics particular to the DMP’s subjective properties or preferences, dependences 

with respect to risks and other main external factors. 

Table 1. Decision matrix. 

 

 

 

 

 

First, we shall consider the objective properties required of the valuation function (aggregation operator) 

F [51].  

1) The first property is the satisfaction of Pareto optimality. To insure this, we require that if for 

j=1,2,…,m, then 

An aggregation operator satisfying this condition is said to be monotonic. 

2) A second condition is that the value of an alternative should be bounded by its best payoffs 

(valuations, utilities) and worst possible one.  i 1, 2, ...,n.  

This condition is said to be bounded. 

3) Remark: if ij ia a for all j , then from Eq. (2) 

min
 

ij ij
j 1,m j 1,m
min{a } max{a }and i1 i2 m iF(a ,a ,...,a ) a .  

 

S

D
 1s  

2s  … 
Ks  … 

ms  

1d  
11a  

12a  … 
1ka  … 

1ma  

2d  
21a  

22a  … 
2ka  … 

2ma  

… … … … … … … 

3d  
i1a  

i2a  … 
ika  … 

ima  

… … … … … …  

nd  
n1a  

n2a  … 
nka  … 

nma  

i1 i2 im k1 k2 kmF(a ,a ,...,a ) F(a ,a ,...,a ).  (1) 

ij i1 i 2 im ijmin{a } F(a ,a ,..., a ) max{a } 
ij i1 i2 im ij

j 1,m j 1,m
min{a } F(a ,a ,....,a ) max{a }
 

   (2) 
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This condition is said to be idempotent. 

4) The final objective condition is that the indexing of the states of nature shouldn’t affect the answer: 

 

where permutatio n(.)  is some permutation of the set 
i1 i 2 im{a ,a , ...,a } . An aggregation function satisfying this 

is said to be symmetric (or commutative). 

Finally, we have required that our aggregation function satisfy four conditions: monotonicity, boundedness, 

idempotency and symmetricity. Such functions are called mean or averaging operators [51]. 

In determining which of the many possible aggregation operators to select as our valuation function, we 

need some guidance from the DMP. The choice of a valuation function, from among the aggregation 

operators is essentially a “subjective” act reflecting the preferences of the DMP for one vector of payoffs 

over another. What is needed are tools and procedure to enable a DMP to reflect their subjective 

preferences into valuations. There are important problems in expert knowledge engineering for which we 

often use such intelligent technologies as neural networks, machine learning, fuzzy logic control systems, 

knowledge representations and others.  

These problems may be solved by introducing information measures of aggregation operators ([1], [2], [4], 

[12], [13], [15], [16], [26]-[33], [35], [38], [40]-[42], [45]-[60], [62] and others). In this paper we will present 

new extensions of information measures of operators constructed bellow. 

As an example, we present some mean aggregation operators. Assume we have an m -tuple of values

1 2 m{a ,a , ...,a } .  

Then 1 2 m i
i 1m

F( a ,a , ..., a ) min{a }


  is one mean aggregation operator. The use of the operator Min corresponds 

to a pessimistic attitude, one in which the DMP assumes the worst thing will happen. Another example of 

a mean aggregation operator is 1 2 m iF( a ,a , ...,a ) Max{a }.  

Here we have very optimistic valuations. Another example is the simple average: 
m

1 2 m i

i 1

1
Mean( a ,a , ..., a ) a .

m 

    

In [58] Yager introduced a class of mean operators called OWA operator. 

 Definition 1. [57]. An OWA operator of dimension m is mapping m 1OWA : R R that has an associated 

weighting vector W of dimension m with 
jw [ 0;1] and 

m

j

j 1

w 1,


  such that  

where bj is the jth largest of the i{a },  i=1,2,...,m.  

Note that different properties could be studied such as the distinction between descending and ascending 

orders, different measures for characterizing the weighting vector and different families of the OWA 

operator ([1], [4], [26]-[33], [45], [47]-[52], [56], [57], [59], [60], [62] and others). 

The OWA operator and its modifications are among the most known mean aggregation operators to the 

construction of DMUU valuation functions. These aggregations are generalizations of known instrument 

i1 i2 im i1 i2 imF(a ,a ,...,a ) F(Permutation(a ,a ,...,a )),  (3) 




m

1 m j j

j 1

OWA(a ,..., a ) w b ,          (4) 
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as Choquet Integral ([5], [7], [23], [38], [41], [51], [53], [54], [57] and others), Sugeno integral ([14], [17], 

[24], [25], [36], [42], [44] and others) or induced mean functions ([2], [12], [60], [62] and others). 

The Fuzzy Numbers (FN) have been studied by many authors ([11] and [19] and others). It can represent 

in a more complete way as an imprecision variable of the incomplete information because it can consider 

the maximum and minimum and the possibility that the interval values may occur. 

Definition 2. [19]. 1a( t ) : R [ 0;1]%  is called the FN which can be considered as a generalization of 

the interval number: 

where 1

1 2 2 3a a' a'' a R .        

In the following, we are going to review the triangular FN (TFN) [20] arithmetic operation as follows 

(in Eq. (5) 2 2a' a'' ). Let a%  and b% be two TFNs, where 1 2 3a ( a ,a ,a )%  and 1 2 3b ( b ,b ,b )% . Then  

The set of all TFNs is denoted by ψ and positive TFNs ( ia 0 ) by ψ . 

Note that other operations and ranking methods could be studied ([19] and others). 

Now we consider some extensions of the OWA operator, mainly developed by [26], [27], and [29], 

because our future investigations concern with extensions of Merigo’s aggregation operators constructed 

on the basis of the OWA operator. 

Definition 3. [29]. Let ψ  be the set of TFNs. A fuzzy OWA operator - FOWA of dimension m is a 

mapping MFOWA : ψ ψ  that has an associated weighting vector w of dimension m with 
jw [ 0,1]  , 

m

j

j 1

w 1


  and 

 

 

 

 

 

2 2

1
1 2

2 1

3
2 3

3 2

1 if t a , a

t a
if t a , a

a a
a t

a t
if t a , a

a a

0 otherwise

  


 
  

 
 

 



%  (5) 

1:  %
1 1 2 2 3 3a b (a b ,  a b ,  a b ).    %     

2:   %
1 3 2 2 3 1a b (a b ,  a b ,  a b ).    %  1 3 2 2 3 1a b a b , a b , a b    %% . 

3:  1 2 3a k (ka ,  ka ,  ka ),  k>0. %
   

4:   %
i

k k k k

1 2 3a (a ,a ,a ),  k>0, a 0.  

5:  %
1 1 2 2 3 3 i 1a.b (a b ,  a b ,a b ),  a 0,  b 0.  %

      
 

6:  %
1

i

3 2 1

1 1 1
b { , , },  b 0.

b b b



 

                     

 

     7:  % % %1 3 1 3
2 2 2 2

a a b b
a b if a b  and if a b  than a b if  otherwise a b.

2 2

 
     % % %

2 2a b if a b %%  and 2 2if a b then a b  %% 1 3 1 3a a b b
if otherwise a b

2 2

 
  %% . 

(6) 
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where jb%  is the jth largest of the m

i i 1{a } 
% , and 

ia ψ,  i=1,2,...,m.  

The FOWA operator is an extension of the OWA operator that uses imprecision information in the 

arguments represented in the form of TFNs. The reason for using this aggregation operator is that 

sometimes the available information presented by the DMP and formalized in payoffs (valuations, utilities 

and others) can’t be assessed with exact numbers and it is necessary to use other techniques such as TFNs. 

So, in this aggregation incomplete information is presented by imprecision variable of expert’s reflections 

and formalized in TFNs. Sometimes the available information presented by the DMP (or expert) also has 

an uncertain character, which is presented by the probability distribution on the states of nature 

consequents on the payoffs of the DMP. 

The fuzzy-probability aggregations based on the OWA operator was constructed by Merigo and others. 

One of the variants we present here: 

where 
jb  is the jth largest of the 

i{a },  i=1,2,...,m; ; each argument 
ia has an associated probability 

ip  with 

m

i

i 1

p 1


 , 
i0 p 1  , j j jP βw (1 β ) p



    with β [ 0,1]  and 
jp  is the probability 

ip  ordered according 

to 
jb ,  that is according  to the jth largest of the 

ia . 

Note that if β 0 , we get the usual probabilistic mean aggregation (mathematical expectation - 
pE  with 

respect to probability distribution m

i i 1{ p } 
 ), and if β 1 , we get the OWA operator. Equivalent 

representation of Eq. (8) may be defined as: 

We often use probabilistic information in the decision-making systems and consequently in their 

aggregation operators. Many fuzzy-probabilistic aggregations have been researched in OWA and other 

operators ([5], [17], [18], [26]-[32], [35]-[42], [49]-[53], [59], [60], [62] and others). In the following we 

present one of them defined in [27]: 

Definition 4. [27]. Let ψ  be the set of TFNs. A fuzzy-probabilistic OWA operator - FPOWA of 

dimension m  is a mapping mFPOWA : ψ ψ  that associated a weighting vector w of dimension m  such 

that jw [ 0,1] ,



m

j
j 1

w 1 , according to the following formula: 

where jb%  is the  jth largest of the m

i i 1{a } 
 are TFNs and each one has an associated probability iip P( a a ) % %

, with 
m

j

j 1

p 1


 , 
j0 p 1  , j j jp βw (1 β ) p '



   , β [ 0,1]  and 
jp ' is the probability ordered according to 

j jjb ( p' P( a b )) % % %  that is according to the  jth largest of the m
i i 1{a } 

% .  




m

1 2 m jj

j 1

FOWA(a ,a ,...a ) w b .% % % %      (7) 

    
m

1 2 m j j

j 1

POWA(a ,a ,..., a ) p b .




  (8) 

   





 

   

 





n

1 2 m j j

j 1

m

i i 1 2 m

i 1

P 1 2 m

POWA(a ,a ,...a ) β w b

(1 β) p a β.OWA(a ,a ,..., a )

(1 β).E (a ,a ,..., a ).

  
(9) 

    


 %% % %
n

1 2 m j j
j 1

ˆFPOWA(a , a ,..., a ) p b .  (10) 
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Analogously to Eq. (9) we present the equivalent form of the FPOWA operator as a weighted sum of 

the OWA operator and the mathematical expectation -
pE : 

In [27] the Semi-boundary condition of the aggregation operator (11) was proved. Semi-boundary condition 

of some operator F  if defined as: 

So, the FPOWA operator is monotonic, bounded, idempotent, symmetric and semi-bounded. 

3|on the Information Measures of the POWA and FPOWA 

Operators 

As preliminary concepts of our investigation we present four probabilistic information measures of the 

POWA and FPOWA operators defined in [27] following similar methodology developed for the OWA 

operator ([1], [2], [3], [6], [47], [48], [50], [52] and others): 

 The Orness parameter classifies the POWA and FPOWA operators in regard to their location between 

and and or: 

 The Entropy (dispersion) measures the amount of information being used in the aggregation: 

 

 The divergence of weighted vector w measures the divergence of the weights against the degree of 

Orness: 

    

 

 

 





 

    

  





% % %

% % % %

% % %

n ~

1 2 m j j

j 1

m

i i 1 2 m

i 1

p 1 2 m

FPOWA a , a , ..., a β w b

(1 β) p a β OWA a , a , ..., a

(1 β) E a , a , ..., a .

 
(11) 

    

 

 

 

    

   

  

% % % %

% % % %

% % %

i p 1 2 m
i

1 2 m i
i

p 1 2 m

β min{a } (1 β) E a , a , ..., a

F a , a , ..., a β max{a }

(1 β) E a , a , ..., a .

 (12) 

   

  







 
  

 

 
   

 





1 2,..., m

m

j

j 1

'
m

j

j 1

α(p , p p )

m j
β w

m 1

m j
(1 β) p .

m 1

  
(13) 

   

  

 



  
    

  
 

1 m2

m m

j j i i

j 1 i 1

H(p , p , ..., p )

β w ln w (1 β) p ln p .
  (14) 
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where α( W )  is an Orness measure of the OWA or FOWA operators ( β 1) : 

and α( p )  is an Orness measure of the fuzzy-probabilistic aggregation ( β 0 ) : 

 

 

 The balance parameter measures the balance of the weights against the Orness or the andness 

 

 

 

 

4|General Decision-Making System (GDMS) and Its Information 

Structure (IS) 

In the parts II and III of this work we will focus on the construction of new generalizations of the POWA 

and FPOWA fuzzy-probabilistic aggregation operators induced by the ME (Choquet Integral [5], [7], [23], 

[38], [41], [51], [53], [54], [57] and others), or the FEV (Sugeno integral [14], [17], [24], [25], [36], [42], [44] 

and others) with respect to different monotone measures (fuzzy measure [8], [14], [21], [22], [36]-[38], [43], 

[44], [53]-[55], [61] and others). When trying to functionally describe insufficient expert data, in many real 

situations the property of additivity remains unrevealed for a measurable representation of a set and this 

creates an additional restriction. Hence, to study such data, it is better to use monotone measures 

(estimators) instead of additive ones. So, we will construct new generalizations of the POWA and FPOWA 

operators with respect to different monotone measures (instead of the probability measure) and different 

mean operators. 

We introduce the definition of a monotone measure (fuzzy measure) [44] adapted to the case of a finite 

referential. 

Definition 5. Let  1 2 mS {s ,s , ..., s }be a finite set and g be a set function sg : 2 [ 0,1] . We say g  is a 

monotone measure on S if it satisfies 

 

   

( i ) g 0; g( S ) 1;

( ii ) A, B S, if A B, then g A g B .

  

   
 

A monotone measure is a normalized and monotone set function. It can be considered as an extension of 

the probability concept, where additivity is replaced by the weaker condition of monotonicity. Non-

additive but monotone measures were first used in the fuzzy analysis in the 1980s [44] and are well 

    






   
    

   

   
    

   





1 2 m

2m

j

j 1

2m

j

j 1

ˆ ˆ ˆDiv(p , p , ..., p )

m j
β w α(W)

m 1

m j
(1 β) p α(P)

m 1

 
(15) 

    


 
  

 


m

j

j 1

m j
α(W) w

m 1
, (16) 

    


 
   

 


m

j

j 1

m j
α P p

m 1
.  (17) 

   






    
   

   

    
    

   





1 2 m

m

j

j 1

m

j

j 1

ˆ ˆ ˆBal(p , p , ..., p )

m 1 2j
β w

m 1

m 1 2j
(1 β) p .

m 1

 
(18) 
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investigated ([8], [14], [21], [22], [36]-[38], [43], [44], [53]-[55], [61] and others). Therefore, in order to 

classify OWA-type aggregation operators with probabilistic (POWA, FPOWA operators and others) or 

fuzzy uncertainty (defined in parts II and III) it is necessary to define an information structure of these 

operators. The different cases of incompleteness (uncertainty measure + imprecision variable) and 

objectivity (objective weighted function) will be considered in our new aggregation operators. Therefore, 

from the point of view of systems approach it is necessary to describe and formally present the scheme 

of GDMS in uncertain – objective environment. GDMS gives us the possibility to identify the different 

cases of levels of incompleteness and objectivity of available information which in whole defines the 

aggregation procedure. 

Now we define the general decision-making system and its information structure which will be 

considered in the aggregation problems of parts II and III. 

Definition 6. The GDMS that will combine decision-making technologies and methods of construction 

of decision functions (aggregation operators) may be presented by the following 8-tuple 

where
1 2 nD {d ,d , ..., d }  is a set of all possible alternatives (decisions, diagnosis and so on) that are made 

by a Decision-Making Person (DMP). 

1 2 m}S {s , s , ..., s  is a set of systems states of nature (actions, activities, factors, symptoms and so on) that 

are act on the possible alternatives in the decision procedure? 

a - is an imprecision on precision variable of payoffs (utilities, valuations, some degrees of satisfaction 

to a fuzzy set, prices and so on), which will by defined by DMP’s subjective properties of preferences, 

dependences with respect to risks and other external factors. As a result, variable a  constructs some 

decision matrix (binary relation) on D S . 

g  is an uncertainty measure on s s2 ( g : 2 [ 0,1]).  In our case it may be some monotone measure. W  

is an objective weighted function (or vector) on the states of nature - S  

I  is the Information Structure on the data of states of nature. Cases of different levels of information 

incompleteness (uncertainty measure + imprecision variable) and objectivity (objective weighted 

function) on the states of nature will be considered as:  

I = Information Structure (on S): =imprecision (on S) + uncertainty (on S) + objectivity (on S), where: 

 Imprecision on S may be presented by some inexact (stochastic, fuzzy, fuzzy-stochastic or other) variable. 

 Uncertainty on S may be presented by the levels of belief, credibility, probability, possibility and other 

monotone measures on s2 . These levels identify the possibility of occurrence of some groups (events, 

focal elements and others) on the states of nature. 

 Objectivity on S is defined by the objective importance of states of nature in the procedure of decision 

making. As usual the objective function is presented by a weighted function (vector)  
0W : S R .  

Now we may classify cases of the Information Structure – I: 

I1: The case:  

 Imprecision is presented by some exact variable   1a : S R .  

 The measure of uncertainty does not exist.  

D,  S,  a,  g,  W, I,  F,  Im ,  (19) 
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 Objectivity is presented by the weights  1 2 mW {w ,w ,...,w }.  

Examples: OWA and MEAN operators belong to I1. 

I2: The case:  

  Imprecision is presented by some fuzzy variable:   % %a ψ; a : S [ 0,1].  

 The measure of uncertainty does not exist. 

 Objectivity is presented by the weights  1 2 mW {w ,w ,...,w }.  

Examples: FOWA operator belongs to I2. 

I3: The case:  

 Imprecision is presented by some stochastic variable:   1a : S R .  

  The measure of uncertainty is presented by concerning probability distribution on S ( SP : 2 [ 0,1] )  

i 1p P{s }, i 1, 2, ..., m.   

 Objectivity is presented by the weights  1 2 mW {w ,w ,...,w }.  

Example: POWA operator belongs to I3. 

I4: The case:  

 Imprecision is presented by the some fuzzy-stochastic variable: 

  % %a ψ; a : S [ 0,1].  

 Uncertainty measure is presented by the concerning probability distribution on S ( sP : 2 [ 0,1] ) 

i ip P{s }, i 1, 2, ..., m.   

 Objectivity is presented by the weights  1 2 mW {w ,w ,...,w }.  

Example: FPOWA operator belongs to I4. 

I5: The case:  

 Imprecision is presented by some exact variable:   1a : S R .  

 The measure of uncertainty defined by some monotone measure (possibility measure [11], [14], [21], [22], 

λ -additive measure ([44] and so on)  sg : 2 [ 0,1].  

 Objectivity is presented by the weights  1 2 mW {w ,w ,...,w }.  

Examples: SEV (Yager [51]) operator belongs to I5; SEV-POWA, AsPOWA, SA-POWA, SA-AsPOWA 

(will be defined in the part II of this work) operators belong to I5. 

I6: The case:  

 Imprecision is presented by some fuzzy variable:   % %a ψ; a : S [ 0,1].  

 The measure of uncertainty is presented by some monotone measure sg : 2 [ 0,1].  

 Objectivity is presented by the weights  1 2 mW {w ,w ,...,w }.  
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Examples. SEV-FOWA, AsFPOWA, and SA-AsFPOWA operators (will be defined in the part III of 

this work) belong to I6. 

Note that some other cases may be considered in the Information Structure – I (for an example, the 

cases when the weights in structure are not present and others). 

7) F – is an aggregation (in our case OWA-type) operator for ranking of possible alternatives by its 

outcome values calculated by the F . Following the Information Structure  I  on the states of nature 

for all possible alternatives  
d D, F( d )

 is a ranking value. In general, 
F( d )

 is defined as converted 

(or condensed) information of imprecision values plus uncertainty measure and objective weights.  

F( d ) aggregation( a( d ),  g, w).                      

We say – that alternative 
jd  is more prefered (dominated) than  

 
kd , j kd d ,f  

j kif  F(d ) F( d ),   

and 
jd  is equivalent to 

kd , 
j kd d , if  

j kF( d ) F( d ) . So, the aggregation operator F  induces some 

preference binary relation  f  on the all-possible alternatives - D . 

8) Im is a set of information measures of an aggregation operator F : 

In order to classify OWA-type aggregation operators {F}  it is necessary to investigate information 

measures (Eq.(20)). This analysis also gives us some information on the inherent subjectivity of the 

choice of the decision aggregation operator by DMP [6]. 

5|Conclusion 

This paper has a conceptual and introductory character. The main preliminary concepts were presented. 

Definitions of the OWA operator and the POWA and FPOWA operators as some fuzzy-probabilistic 

extensions of the OWA operator were introduced. Their information measures as - Orness, Enropy, 

Divergence and Balance were considered. From the point of view of systems approach the scheme of 

GDMS in uncertain – objective environment and its Information Structure was described and formally 

presented. New GDMS gives us the possibility to identify the different cases of levels of incompleteness 

and objectivity of available information which in whole defines the aggregation procedure. The main 

results on the constructions of new generalizations of the POWA and FPOWA operators will be 

presented in Parts II and III of this work. 
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Abstract 

 

1 | Introduction  

Failure Mode and Effects Analysis (FMEA), is a proper approach to assessing system, design, 

process or services. It can uncover paths, including problems, errors and risks, ending to a failure. 

FMEA is a preventive action with a teamwork approach. It was first developed as a design 

methodology in the aerospace industry to meet security and reliability requirements and then was 

broadly adopted in the industry field to assure the security and reliability of products [21]. It is an 

effective tool for predicting errors and finding the minimum cost of error-avoidance solution. 

FMEA is a structured technique for initializing design step or reviewing and developing product 

and service design in the organization. It is used to link the key parameters of an organization, 

related documents, design and implementation and so on [7]. Generally, FMEA avoids the 
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occurrence of errors, promotes the creation and development of a great product or service and records 

related parameters and indices of designs and developments, process or services [1]. The output of FMEA 

intends to answers the following questions: what kind of errors, problems or risks are there? Which one 

of the identified errors, problems or risks has the highest importance (risk)? What are the remedies for 

reducing the occurrence probability of such cases? FMEA systematically takes the control in order to 

provide a correct answer to these questions. In addition to the identification of errors, problems or latent 

risks of a process, it prioritizes them relying on the knowledge and proficiency of a work team. Risk analysis 

is a part of FMEA technique applied to prevent the occurrence of a problem.  

Today, organizations have discovered by experience that the concept of zero risk is no longer available and 

the occurrence of a problem is always probable. By improving control systems, therefore, they try to reduce 

the occurrence probability of problems and accidents in the work place and entrust remainder possible 

risks, known as residual risks in the insurance literature, to insurance companies [17]. Organizations 

implement FMEA for different reasons. Dale and Shaw [6] conducted a study on Ford Company. 

According to their results, companies implement FMEA in order to satisfy customers’ needs, improve the 

quality and reliability of products and improve the process and safety of production [23]. FMEA is a proper 

methodology for engineers by which they create a structured approach in the following mental thought 

[21]: 

 What may be done by mistake? 

 What may serve as the cause of a mistake? 

 What are the consequences of mistakes? 

Ireson et al. believe that FMEA is an effective preventive methodology which can be easily connected to 

many engineering and reliability methodologies. FMEA creates an effective risk management environment 

through influencing the probable deficiencies of a product/service and providing planned reactions to 

such deficiencies [12]. According to Chrysler [6] FMEA may be described as a group of regular activities 

identifying and assessing the probable deficiencies of a product/service. Furthermore, it identifies those 

activities which can reduce or eliminate failure opportunities within a given period of time. In addition, it 

helps users to identify the main aspect of a design or process to be particularly controlled for production 

purposes and to realize those areas showing an advanced control or performance. Reviewing related 

literatures many studies have been carried out to strengthen FMEA using artificial intelligence, AI, 

modeling techniques [5]. Russomanno et al. [19] suggested in their works the application of AI systems in 

FMEA. Bowles and Pelaez used fuzzy logic to improve deficiency risk assessment and FMEA prioritization 

capability [2]. 

This method uses 0-10 scoring system. Every number stands for a specific level of severity, probability or 

detection of a problem. RPN is, indeed, the product of severity, probability and detection and depends on 

the following three factors [10]. 

Severity (assessment and measurement of failure result) stands for the severity of a potential failure effects. 

It is actually a kind of assessing and measuring the consequences of a failure. The extent of severity 

indicates the extent of the effect of a potential failure or incident. Severity is a numerical number where 

the more important the effect, the higher the severity. Severity number varies from 1 to 10.  

 

RPN = Severity × Occurrence × Detection.  
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Probability (the probability of the occurrence of a failure or incidence or in other words counting the 

number of failures) stands for rank (value) which is used to estimate the occurrence probability of a 

failure or incident or, in other words, to count the number of failures. Mathematics, process capability 

index, reliability and probability rules can be adopted to determine the probability of each process. 

Probability is assessed using numerical values ranging from 1 to 10. 

Detection stands for detecting an incident prior to realizing the consequences of its occurrence. RPN is 

assessed by a number ranging from 1 to 1000. It is used to classify required corrective actions for 

reducing or eliminating potential failure or incident modes. Failure/incident modes with higher RPN 

numbers should be assessed at the first priority. However, paying attention to the severity number of 

each class is of high importance. If the severity number of a class is 9 or 10, the cause should be urgently 

assessed regardless of the total RPN number of that class [1]. 

The application of fuzzy set theory has been broadly studied due to the ambiguity of risk analysis in 

different engineering fields. Lee [14] adopted fuzzy set theory for comprehensive risk assessment of 

software development. Sadiq and Husain [20] employed a fuzzy-based method for comprehensive 

environmental risk assessment of drilling time loss during drilling operation. Wang and Elhag [24] used 

fuzzy group decision making method for bridging risk analysis purposes. In an article, Pillay and Wang 

[18] used fuzzy logic and FMEA grey relational analysis in navigation industry to overcome the 

traditional weaknesses of FMEA in risk assessment. Xu et al. [26] suggested a fuzzy FMEA estimation 

for engine systems in their works. Guimara and Lapa [9] adopted an absolute fuzzy logic system in the 

inlet water system of a reserved steam boiler of a nuclear power plant in order to improve risk ranking. 

Sankar and Prabhu [21] criticized RPNs due to combining P, S and D. Wang et al. [25] suggested Fuzzy 

Weighted Geometric Mean (FWGM), for calculating Fuzzy Risk Priority Number (FRPNs) and centroid 

defuzzification method for finding the centroid of fuzzy number. In an article, Bowles and Pelaez [13] 

used fuzzy cognitive maps to demonstrate the relationships between the causes of errors effects. They 

argued that fuzzy cognitive maps are an appropriate diagnosis tool in FMEA because they can 

demonstrate the proportions and relationships between causes and effects. This study uses a combined 

triangular-trapezoidal membership function. In another article, Bowles and Pelaez [2] used “if-then” 

logic to develop FMEA in fuzzy environment where all possible modes between severity, probability 

and detection parameters are studied using “if-then” logic. For instance, if severity and probability are 

high and detection is low, then the priority of risk will be high. This model uses a triangular-trapezoidal 

membership function. The study of Chang et al. [4] is another work in the field of FMEA where they 

introduced a relatively easy defuzzifier model to obtain the accurate value of linguistic variables. They 

first allocate a linguistic variable to severity, probability and detection parameters and then allocate a 

fuzzy number to each linguistic variable using a triangular membership function. Afterward, they 

defuzzify them using their defuzzifier model and calculate a relative relationship degree for each cause 

of the three parameters. The stronger the relationship, the weaker the effect of cause. Therefore, any 

increase in the relationship degree indicates improved risk priority. 

In this study, selection of fuzzy membership function is done first, then fuzzy risk priority numbers 

calculations are done by multiplying the membership functions of Severity, Probability and Detection, 

finally fuzzy risk priority numbers as fuzzy numbers are prioritized using Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS).  
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4.1 | Explanation of a Number of Models 

Fuzzy quantities are ranked based on one or more features of fuzzy numbers including the center of gravity, 

the area below membership function or intersection points of sets. In one ranking model, a particular 

property of fuzzy number is selected and variables are ranked in terms of this property. Therefore, the first 

rational conclusion is that we should not expect that different ranking methods assign the same ranks to 

the same samples of fuzzy numbers.  

Methods for ranking fuzzy number are divided into two groups: 

 Some methods convert a fuzzy number to a non-fuzzy number using a mapping function, F. In other 

words, if Ã is a fuzzy number, then F (Ã) =a will be a non-fuzzy number. Then, they rank fuzzy numbers 

by ranking corresponding non-fuzzy numbers derived from this function. The center of gravity, the 

maximum membership function and left and right scores are among the techniques of this group.  

 Some methods conduct a pairwise comparison on fuzzy numbers using fuzzy relations and states results 

with linguistic words. For example, results will be similar to this sentence: “fuzzy number Ã is better then 

fuzzy number B̃ to some extent”.  

However, each method has its own advantages and disadvantages. Regarding group 1, it is argued that the 

conversion of a fuzzy number to a non-fuzzy number may result in the loss of a large number of data 

deliberately kept during calculation process. On the other hand, such methods rank considered fuzzy 

numbers in a stable manner. In other words, if A ̃ is larger than B ̃ and B ̃ is larger than C ̃, then A ̃ will be 

always larger than C ̃. Furthermore, there will always be a fuzzy number in ranked numbers which are 

introduced as the best, the second best and the third best and so on. Maintaining the linguistic words 

during comparison process, group 2 methods survive fuzzy information of a problem. Nevertheless, it may 

be impossible to determine the total rank of a fuzzy number among other fuzzy numbers using pairwise 

comparisons. This means that if A ̃ is better than B ̃ and B ̃ is better than C ̃, then A ̃ might not be better 

than C ̃. 

The inherent complexity of techniques for ranking fuzzy numbers is not limited to this. In simple problems, 

the majority of techniques perform a stable ranking. Nevertheless, in more complex problems, different 

ranking techniques lead to different results. This means that if for some values of x, the membership 

functions of fuzzy numbers overlap with each other (intersect) or even if there is a slight difference between 

the support sets of fuzzy numbers, then different methods will most likely assign different ranks to fuzzy 

numbers [8].  

In an article, Lavasani et al. [16] assessed offshore wells risks. The majority of offshore wells data are 

unknown and ambiguous data and discovering their mechanisms is a difficult and complex problem. They 

stated every basic risk item using a trapezoidal fuzzy number which was a combination of probability and 

severity.  

Tay and Lim relied in their article on fuzzy inference techniques as a way for overcoming the weaknesses 

of classic FMEA systems. Compared with classic FMEA, fuzzy methods assess the risks of failure modes 

and ranks them based on expert knowledge. This article introduces a general method for modeling RPN 

function. Fuzzy FMEA assumes three inlet factors of RPN function, i.e., severity, probability and detection 

as the input factors of fuzzy RPN function. In this way, a Fuzzy Inference System (FIS) is generated along 

with a set of fuzzy production rules, FPRs, in order to infer input factors [15]. 
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Fig. 1. FRPN model. 

Ilangkumaran and Thamizhselvan identified and ranked risks in petrochemical industry. They used 

hazard and operability study method (HAZOP) and FMEA in order to identify and prioritize probable 

latent defects of a system [11].  

HAZOP is an old methodology. It systematically and effectively identifies all important latent defect 

modes endangering human, environment, facilities and process. It was used to score FRPN which is 

used in FMEA. This proposed technique is used to find a better rank for defect modes. The number of 

risk priorities and the fuzzy adjusted geometric mean of risk are used to improve risk assessment 

efficiency. This makes the effective assessment of malfunctioning systems easier. The higher the fuzzy 

centroid value, the higher the overall risk and the higher the risk priority. All failure modes can be 

prioritized in terms of the fuzzified centroid values of their FRPNs [11].  

In their article, Shirouyehzad et al. [22] defuzzified triangular fuzzy numbers of FRPN and then ranked 

them. This paper used left and right scores technique to defuzzify numbers.  

4.2 | Fuzzy Risk Priority Number 

After obtaining the rates of severity, probability and detection from Tables 1, 2 and Table 3, this method 

obtains FRPN by selecting a fuzzy membership function for each rate and forming a membership 

function by multiplying fuzzy membership functions. 

4.2.1 | Selection of fuzzy membership function 

Five linguistic variables i.e., very low (VL), low (L), moderate (M), high (H) and very high (VH) were 

assigned to all influential factors of risk bearing degree i.e., severity, probability and detection. These 

variables are assigned to the ranks as per the following Table 1.  

Table 1. Fuzzy numbers of linguistic variables corresponding to ranks 1 to 10. 

 

 

 

 

 

{VL, L, M, H, VH} = T(x) = set of linguistic variables values, 

[0, 1] = U= variation amplitude of the reference set. 

Fuzzy Number Verbal Variable Rank 

(0.9,1,1) VH 9,10 

(0.7,0.85,1) H 7,8,9,10 

(0.4,0.6,0.8) M 4,5,6,7,8 

(0.2,0.35,0.5) L 2,3,4,5 

(0,0.15,0.3) VL 1,2,3 
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Fig. 2. Membership function of linguistic variables. 

 

4.2.2 | Forming a membership function by multiplying the membership functions of severity, 

probability and detection 

FRPN is calculated from the following relation by multiplying the membership functions of severity, 

probability and detection. If M is a linguistic variable, its triangular fuzzy number may be defined as follows: 

 

Where u, l and m are the upper limit, the lower limit and the mean of u, respectively where the membership 

degree of l is 1.  

Algebraic operations rules are applied on triangular numbers as follows to calculate RPN: 

 

4.3 | Prioritization of Fuzzy Numbers Using TOPSIS 

Classis TOPSIS uses accurate and precise values to determine the weight of criteria and rank options. 

Fuzzy TOPSIS assesses the elements of decision-making matrix or the weight of criteria, or both, using 

linguistic variables offered by fuzzy numbers.    

This article uses Cheng and Hwang [3] technique in the case of triangular fuzzy numbers. Then, decision 

matrix is formed as follows: 

 

 

 

 Criteria weight matrix is defined as follows: 

M= (l, m, u).   

RPN = S × P × D,   

FRPN = (l1, m1, u1) × (l2, m2, u2) × (l3, m3, u3) = (l1l2l3, m1m2m3, u1u2u3). (1) 

D̃= [
x̃11 ⋯ x̃1n

⋮ ⋱ ⋮
x̃m1 ⋯ x̃mn

] ,       x̃ij=(aij,bij,cij),   i = (1, 2… m),    j = (1, 2… n).   
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Then, fuzzy decision matrix is de-scaled: 

 

The fuzzy decision matrix is weighted.  

 

Then, fuzzy ideal and non-ideal solutions are found: 

 

 

 

 

 

 

 

         The closeness to ideal and non-ideal solutions is calculated: 

 

 

 

 

 

W̃= [w̃1,w̃2,w̃3,…,w̃n].  

w̃j=(wj1,wj2,wj3).  

x̃ij= (
aij

cj
* ,

bij

cj
* ,

cij

cj
*) .  (2) 

cj
*= max cij, (3) 

R̃=[ r̃ij]
m×n 

 i =1, 2… m; j =1, 2,…,n  .  

ṽij=rij.w̃j,  (4) 

Ṽ=[ ṽij]
m×n 

  i=1, 2… m; j=1, 2… n.  

A*={ ṽ1
* ,ṽ2

* ,ṽ3
* ,…,ṽn

* }.  (5) 

A-={ ṽ1
- ,ṽ2

- ,ṽ3
- ,…,ṽn

- }. (6) 

ṽj
*= max {ṽ

ij
}   i=1, 2… m; j=1, 2… n. (7) 

ṽj
-= min {ṽ

ij
}   i=1, 2… m; j=1, 2… n. (8) 

Si
*= ∑ d(

n

j=1

ṽij,ṽ1
*) , i=1,2,…,m. (9) 

Si
-= ∑ d(

n

j=1

ṽij,ṽ1
- ) , i=1,2,…,m. (10) 
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Finally, similarity index is calculated and alternatives are ranked: 

The following case study was conducted on gas and oil wells drilling operations using FRPN techniques. 

According to the following table, there are 8 potential failure modes each has different effects, causes and 

detection probabilities determined by FMEA team. Severity, probability and detection numbers are defined 

using related tables and by the aid of FMEA team. The RPN of all 8 potential failure modes is determined. 

The last column of Table 2 shows the control actions required for each mode.  

After determining corresponding linguistic variables for the values, the fuzzy numbers of severity, 

probability and detection is defined using membership function and in accordance with Table 1. Then, 

FRPN is calculated as per Table 4. Finally, fuzzy TOPSIS is used to prioritize them.  

Table 2. Formation of fuzzy membership function for severity, probability, and detection for all 8 potential 

failure modes. 

 

 

 

 

 

 

After determining the linguistic variables of severity, probability and detection for all 8 potential failure 

modes, fuzzy values are substituted as per Table 3. Then, FRPNs are calculated using Eq. (1) and in 

accordance with Table 4. 

Now, all 8 potential failure modes are prioritized using fuzzy TOPSIS. Criteria are considered positive 

values and each member is divided into the maximum number of each column as per Eq. (2) in order to 

normalize and de-scale them. Then, they are multiplied by the weight matrix as per Eq. (4). Since there is 

the same number of criteria, the balanced matrix will be similar to the previous matrix. Table 5 shows 

obtained values.  

R̃ = Ṽ . 

 

dv=√
1

3
[(a1-a2)2+(b1-b2)2+(c1-c2)2. (12) 

CCi= 
Si

-

Si
*+Si

-
 i=1,2,…,m. (12) 

Detection Probability Severity # 

(0,0.15,0.3) (0.9,1,1) (0.4,0.6,0.8) 1 

(0.2,0.35,0.5) (0,0.15,0.3) (0.7,0.85,1) 2 

(0.4,0.6,0.8) (0.2,0.35,0.5) (0.4,0.6,0.8) 3 

(0.2,0.35,0.5) (0.4,0.6,0.8) (0.7,0.85,1) 4 

(0,0.15,0.3) (0.4,0.6,0.8) (0.4,0.6,0.8) 5 

(0,0.15,0.3) (0.4,0.6,0.8) (0.4,0.6,0.8) 6 

(0,0.15,0.3) (0.7,0.85,1) (0.7,0.85,1) 7 

(0,0.15,0.3) (0.7,0.85,1) (0.7,0.85,1) 8 
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Table 3. FMEA table. 

 

Table 4. Formation of membership function by multiplying the membership functions of severity, probability 

and detection. 

 

 

 

 

 

 

 

# Process 
Function 

Potential 
Failure Mode 

Potential 
Effect(s) of 
Failure 

S
e
ve

ri
ty

 Potential 
Cause(s)/ 
Mechanism(s) of 
Failure 

P
ro

b
a
b

il
it

y
 Current  

Process  
Controls 

D
e
te

c
ti

o
n

 

R
P

N
 

1 Check top drive 
& run in hole 

Collapse/part 
of 9-5/8" 
casing 

Technical non-
productive time 
(NPT) for 
contractor. 

5 Poor cementing / 
poor design of 
casing. 

9 Pressure test of 
annulus both 
positive& negative 
run in hole with 
bit. 

1 45 

2 Drilling 6-1/8" 
hole section 

Low progress More time than 
program. 

8 Deviated hole& 
abnormal 
parameters. 

1 Monitoring 
surface 
parameters& 
optimization. 

3 24 

3 Side track the 
well 

Low progress 
in side tracking 

More time than 
program. 

6 Utilizing heavy 
duty material in 
 4-3/4" positive 
displacement 
motors hardness of 
formation& low 
motor efficiency. 

3 Calculate time 
more than the 
previous drilling 
operation. 

4 72 

4 5" liner lap 
leakage 

Leakage in 
liner lap 

More time than 
program. 

7 Poor cementing of 
liner. 

5 Abnormal surface 
pressure. 

2 70 

5 Fish in hole Fish in hole 
while drilling 
cement plugs 

More cost for 
contractor due 
to remedial 
actions. 

5 Hard cement & 
harsh parameters. 

4 Drill out cement 
to evaluate quality. 

1 20 

6 Opening 
window 

More time in 
opening 
window & 
rupture of tri 
mill 

More time than 
program. 

5 Low quality of tri 
mill strength of 
casing due to high 
thickness. 

4 Casing coupling 
log (CCL) & 
segmented bond 
tool (SBT) log. 

1 20 

7 Flowing the well Well does not 
flow normally 

Excess 
operations & 
cost. 

7 Formation 
damage& skin. 

7 Poor wellhead 
pressure after 
perforation. 

1 49 

8 Running 7" liner Liner stuck More time than 
program. 

8 Poor hole 
condition& dog leg 
severity. 

7 Monitoring of 
condition trips  
determining tight 
holes. 

1 56 

FRPN # 

(0,0.09,0.24) 1 

(0,0.0446,0.15) 2 

(0.032,0.126,0.32) 3 

(0.056,0.1785,0.4) 4 

(0,0.054,0.192) 5 

(0,0.054,0.192) 6 

(0,0.108,0.3) 7 

(0,0.108,0.3) 8 
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Table 5. Formation of membership function by multiplying the membership functions of severity, 

probability and detection. 

 

 

 

 

 

At this point, the closeness to ideal and non-ideal solutions and similarity index are calculated in accordance 

with relations 11, 10, 9, 12. 

Table 6. Calculating closeness to ideal and non-ideal solutions and similarity index. 

 

 

 

 

 

The priority of activities is obtained as follows: 

Activity 4, activity 3, activities 7 and 8, activity 1, activities 5 and 6, activity 2. 

The comparison of the obtained results with those of non-fuzzy RPN technique demonstrates ranking 

difference.  

Result Of non-fuzzy RPN Ranking were: 

Activity 3, activity 4, activity 8, activity 7, activity 1, activities 2, activities 5 and 6. 

Given the importance of recognizing risk factors and their multiplicity, it is important to prioritize them. 

This article first identified hazards using FMEA tool and conducting teamwork for each activity. Second, 

it examined the relative priority of these factors with the help of the RPN, the FRPN, and TOPSIS. 

Extensive research has been done for improving the FMEA methodology using such techniques as fuzzy 

logic. This article tried to maintain the fuzzy information of problem by maintaining fuzzy logic values 

equivalent to linguistic terms in comparison process. In simple problems, most methods perform ranking, 

but in more complex problems, they lead to different results. In other words, for some X values, if fuzzy 

number membership functions overlap (intersect) with each other or even if fuzzy number support sets 

slightly differ with each other, various methods will most likely assign different rankings to fuzzy numbers. 

 

FRPN (𝐕̃) # 

(0,0.5042,0.6) 1 

(0,0.2499,0.375) 2 

(0.5714,0.7059,0.8) 3 

(1,1,1) 4 

(0,0.3025,0.48) 5 

(0,0.3025,0.48) 6 

(0,0.6067,0.75) 7 

(0,0.6067,0.75) 8 

(1,1,1) ṽ 
∗ 

(0,0,0) ṽ 
− 

𝐒𝐢
∗ 𝐒𝐢

− 𝐂𝐂𝐢
  # 

0.8918 0.4525 0.34 1 

0.9656 0.2602 0.21 2 

0.7154 0.6988 0.49 3 

0 1 1 4 

0.9448 0.3276 0.26 5 

0.9448 0.3276 0.26 6 

0.8305 0.5570 0.4 7 

0.8305 0.5570 0.4 8 
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The fuzzy number ranking results presented in this article can be challenged through comparing them 

with the results of the Fuzzy Techniques for Order of Preference by Similarity to Ideal Solution 

(FTOPSIS) method. The same method can also be used for calculating the fuzzy risk level in qualitative 

and  

semi-quantitative risk assessment techniques with two and more than two dimensions. 
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Abstract 

1 | Introduction 

Psychopathology is a subject that deals with problems related to mental health: how to understand 

them, how to classify them, and how to fix them. Thus, the topic of psychopathology extends 

from research to treatment and covers every step in between [4]. Proper understanding of causes 

of mental disorders therefore allows for effective treatments. The major problem aspect of work 

is psychopathology (emotional or behaviour disorders) which results from inhuman work 

conditions such as profit maximization and exploitation, poor leadership particularly task-oriented 

leadership, poor followership, selfishness and laziness. Occupation, when not managed very well, 

affects, ab initio, individual’s personal, family, physical, social, and psychological health. In fact, 

work can cause permanent injury to man’s physical and psychological health and can also reduce 

one’s life span [3]. 
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Occupational stress occurs when some elements of work generate negative impacts on an employee’s 

physical and mental well-being. World Health Organisation [9] estimates that about 154 million people 

suffer from depression, 25 million people suffer from schizophrenia, 91 million people are affected by 

alcohol use disorder and 15 million people suffer from drug use disorder. Hence, psychopathology is a 

global problem. 

The precipitating and maintenance factors of some psychopathological symptoms are: hypertension, 

diabetics, drug related symptoms, depressions, schizophrenia, anxiety and other neurotic symptoms, sexual 

and reproductive dysfunctions, poor intra and   interpersonal relationships, marital stress and family crises 

have been linked to conditions relating to occupational hazards and demands including occupational stress 

and betrayal of trust by the employer or employee ([1] and [2]). Due to the nature of the problem stated 

above, this paper proposes a model that can be used to address such problems in any organization to 

prevent poison to the workers. 

Psychiatry is the most multifarious domain in medical sciences. Psychiatry diseases are not directly 

measured due to unclear symptomatic presentations. Results of investigation and treatment are physically 

correlated with the course of morbidity and such correlations can head to biased decision making. It is 

often noticed that different diseases present with analogous types of symptoms and vice versa. Also behind 

deposit of symptoms, there is possibility of multiple diseases evident in case of psychopathology with 

mania. 

Researchers attempted to use hard computing techniques, such as heuristic and probabilistic algorithm in 

diagnosing psychiatry diseases. But they found that such algorithm are rigid to actually evaluate morbidity 

[6]. On the other hand, the merit of fuzzy logics lies on competence to handle non-discrete quantitative 

inputs and analyze like human beings. 

General causes of occupational psychopathology can be divided into two major groups namely work 

related factors and individual factors. The work-related factors are: work overload, time pressures, bad 

relations with supervisor, change of work, role ambiguity, frustration, conflict at work and, job design and 

harassment. The individual factors can be enumerated as follows; financial worries, marital problems, 

pregnancy, problems with children clash of spouse, personal traits and excessive consumptions of alcohol. 

The data for this work is obtained from two different hospitals, using different case files that span over 

five years.  Medical results, together with the associated symptoms of patients whose cases are of interest 

to this study were collected for analysis.  

2. Methodological Approach 

This study applies fuzzy algebraic model to analyze the data. We assume that all α levels are the same, that 

is, the two major criteria are of the same significant level. A fuzzy set is a pair  ( X , μ ) where X  and μ  a 

membership function. The reference set X  is called universe of discourse, and for each x X  the 

value 
xμ  is called the grade of membership of  x ( X , μ ) . The function  Aμ μ  is called the membership 

function of the fuzzy set A ( X , μ ) . The fuzzy set is said to be convex if and only if 

    s s
A 1 2 1 2A A

μ ( λx (1 λ )x ) min μ ( x ), μ ( x ) ,   1 2x ,x X, λ 0,1 , where 𝜇𝐴 and 𝜇𝐴̅ are membership 

functions of A  and its complement A  respectively. The typical pairs of non-parameterized t-norms(𝜏𝑁) 

and t-conorms(𝜏(𝑁) are given respectively by the Hamacher product 

 


 

% %
% %

% % % %

A B

A B

A B A B

μ (x).μ (x)
t(μ (x),μ (x)) .

μ (x) μ (x) μ (x).μ (x)
 (1) 
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The Hamacher sum is given by 

We recall some basic definitions and algebra of Intuitionistic Fuzzy Sets (IFS) and Picture Fuzzy Sets 

(PFS):  

 Intuitionistic fuzzy sets 

Let 𝑋 ≠ ∅ be the universe of discourse. The Intuitionistic IFS over X is defined by: 

where 𝜇̂𝐴: 𝑋 → [0,1] 𝑎𝑛𝑑 𝜇̂𝐵: 𝑋 → [0,1] are respectively membership and non-membership function of 

IFS A. Here 0 ≤ 𝜇̂𝐴 + 𝜇̂𝐵 ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝑋 and 𝜋:= 1 − (𝜇̂𝐴(𝑥) + 𝜇̂𝐵(𝑥)) is called the degree of 

indeterminacy of 𝑥 ∈ 𝑋 in IFS A. The pair (𝜇̂𝐴, 𝜇̂𝐵) is called Intuitionistic Fuzzy Value or Intuitionistic 

Fuzzy Number (IFN) by Xu [10]. 

 Picture fuzzy sets 

Let X be a universe of discourse objects. A picture fuzzy set over X, denoted by 𝑃̂ is defined as follows: 

where 𝜇̂𝐴𝑃̂: 𝑋 → [0,1], 𝜃̂𝑃̂: 𝑋 → [0,1] 𝑎𝑛𝑑 𝜇̂𝐵: 𝑋 → [0,1] are called positive neutral and negative degree of 

membership of picture fuzzy set 𝑃̂ , respectively. Here, 0 ≤ 𝜇̂𝐴𝑃̂(𝑥) + 𝜃̂𝑃̂(𝑥) + 𝜇̂𝐵𝑃̂(𝑥) ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈

𝑋 . Besides, 𝜃𝑃̂(𝑥) denotes degree of refusal of 𝑥 ∈ 𝑋 and is defined by 𝜋:= 1 − (𝜇̂𝐴𝑃̂(𝑥) + 𝜃̂𝑃̂(𝑥) +

𝜇̂𝐵𝑃̂(𝑥)). The pair (𝜇̂𝐴𝑃̂ , 𝜃̂𝑃̂, 𝜇̂𝐵𝑃̂) is called Picture Fuzzy Value (PFV) or Picture Fuzzy Element (PFE). 

2.1. Hamacher Operation on Picture Fuzzy Set  

2.1.1. Hamacher operations 

The TN and TCN are useful notions in fuzzy set theory, which are used to define general union and 

intersection of fuzzy set. The definition and conditions of TN and TCN are proposed by Roychowdhury 

and Wang [11]. The generalized union and generalized intersection of intuitionistic fuzzy sets based on 

TN and TCN were provided by Deschrijver and Kerre [5]. In 1978, Hamatcher introduced HOs known 

as Hamacher sum () and Hamacher product (  ) , which are examples of TN and TCN respectively 

and  are given by 

For 𝜑=1, the Hamacher TN and TCN reduce to the forms:  

𝑇𝐻 and 𝑇𝐻
∗  represent algebraic TN and TCN respectively. When 𝜉 = 2, the Hamacher TN and TCN will 

conclude to the form 

 

 




% % % %
% %

% %

A B A B

A B

A B

μ (x) μ (x) 2μ (x).μ (x)
s(μ (x),μ (x)) .

1 μ (x).μ (x)
 (2) 

A = {[μ̂A(x), μ̂B(x)]|x ∈ X}, (3) 

P̂ = {[μ̂AP̂(x), θ̂P̂(x), μ̂BP̂(x)]|x ∈ X}, (4) 

TH(uA, uB) = uA⊕uB =
uA + uB − uAuB − (1 − φ)uAuB

1 − (1 − φ)uAuB
. (5) 

TH
∗ = (uA, uB) = uA⊗uB) =

uAuB
φ + (1 − φ)(uA + uB − uAuB

. (6) 

TH = (uA, uB ) = uA⊕uB = uA + uB − uAuB. (7) 

TH
∗ = (uA, uB) = uA⊗uB = uAuB. (8) 
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We make use of the Hamacher operations on PFNs provided by Wei [7] and Wu & Wei [8]. Let X and Y 

be two PFSs, then Hamacher Sums and Products of the two PFSs X and Y are denoted by (𝑝̂1⊕ 𝑝̂2) and 

(𝑝̂1⊗ 𝑝̂2), respectively, and defined by 

And 

 

2.2. Model for Multiple Component Analysis (MCA) 

In this section, Multiple Component Analysis (MCA) method using picture fuzzy information model is 

proposed based on the operators where weights are real numbers and values of attributes are PFNs. To 

illustrate effectiveness of the proposed MCA method, an application of neuro-psychopathology under 

picture fuzzy information is given. Let 𝑌 = (𝑦1 , 𝑦2, … , 𝑦𝑟 ) be the discrete set of alternatives and 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑠) be the set of attributes. 

Let 𝛷 = (𝜙1, 𝜙2, … , 𝜙𝑠)be the weight vector of the attribute such that 𝜙𝑏 > 0, (𝑏 = 1,2, … , 𝑠) and 

∑ 𝜙𝑏
𝑠
𝑏=1 = 1, and let 

𝑅 = (𝜇̂𝑎𝑏 , 𝜑̂𝑎𝑏 , 𝜐̂𝑎𝑏), be an r by s picture fuzzy decision matrix. Here, 𝜇̂𝑎𝑏 is the degree of the positive 

membership for which alternative 𝑌𝑎 satisfies the attribute 𝑋𝑏 given by decision. 𝜑̂𝑎𝑏 denotes the degree 

of neutral membership such that alternative 𝑌𝑎 does not satisfy the attribute 𝑋𝑏. 𝜐̂𝑎𝑏 provides the degree 

that the alternative 𝑌𝑎 does not satisfy the attribute 𝑋𝑏 given by the decision. 

Let 𝑃̂ = (𝜇̂𝑎𝑏 , 𝜑̂𝑎𝑏 , 𝜐̂𝑎𝑏) be a PFI. Then the score function is given by 𝑆̂𝑝 is defined as 

2.2.1. Steps in using MCA 

Step 1. Construction of matrix R by decision under PF-Information 

 

 

 

 

TH = (uA, uB) = uA⊕uB =
uA + uB
1 + uAuB

. (9) 

TH
∗ = (uA, uB) = uA⊗uB =

uAuB
1 + (1 − uA)(1 − uB)

. (10) 

p̂1⊕ p̂2

=

(

 
 

μ̂A1 + μ̂A2 − μ̂A1μ̂A2 − (1 − φ)μ̂A1μ̂A2
1 − (1 − φ)μ̂A1μ̂A2

,
θ̂1θ̂2

φ+ (1 − φ)(θ̂1 + θ̂2−θ̂1θ̂2)
,

 
μ̂B1μ̂B2

φ+ (1 − φ)(μ̂B1 + μ̂B2 − μ̂B1μ̂B2 )

 
 

 
(11) 

p̂1⊗ p̂2 =

(

 
 

μ̂A1μ̂A2
φ + (1 − φ)(μ̂A1 + μ̂A2 − μ̂A1μ̂A2

,
θ̂1 + θ̂2 − θ̂1θ̂2 − (1 − φ)θ̂1θ̂2

1 − (1 − φ)θ̂1θ̂2
 ,

 
μ̂B1 + μ̂B2 − μ̂B1μ̂B2 − (1 − φ)μ̂B1μ̂B2

1 − (1 − φ)μ̂B1μ̂B2 )

 
 

 (12) 

Ŝp = μ̂ab − ν̂ab, where Ŝp  ∈ [−1, 1].  (13) 

(

α̂11 α̂12⋯ α̂1r
α̂21 α̂22⋯ α̂2r
⋮ ⋮    ⋱ ⋮
α̂a1α̂a2α̂ar

). (14) 
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Step 2. Finding the values of 𝛼̂𝑎 (𝑎 = 1,2, … , 𝑟) based on decision matrix R. These values are found by 

using PFH.  

= PFH  (𝛼̂𝑎1, 𝛼̂𝑎2, … , 𝛼̂𝑎𝑏)=⊕𝑏=1
𝑠 (𝜙𝑏𝛼̂𝑎𝑏) = 

 

 

 

Step 3. Calculate the score 𝑆̂(𝛼̂𝑎), (1,2, … , 𝑟). 

Step 4. Rank them 𝜙𝑎 > 0, (𝑎 = 1,2, … , 𝑟) 

Step 5. Arrange them in ascending order. 

Step 6. Stop. 

2.3. Numerical Example and Data Collection 

Seven major causes of occupational psychopathology have been considered in this study according to 

DSM-IV-TR guidelines. These symptoms denote independent factor. Data of total number of 400 adult 

cases have been collected from two different hospitals. A control group (none) has been considered to 

validate the model. The grades of these cases are unknown. Appropriate ethical measures have been 

taken to preserve data privacies. Our study excludes Patients whose ages are below the working-class 

age (35 -60).  

Table 1. Occupational Psychopathology (OCP) and the corresponding abbreviations. 

 

 

 

 

Step 1. Decision matrix R is constructed by a professional or expert under PF information as follows. 

Step 2. Let 𝜉 = 4. By using the PFH operator of the overall performances values 𝛼̂𝑎 of probable 

occupational stress, 𝜑𝑎  (𝑎 = 1,2,3,4,5,6,7) are obtained as follows: 

μ̂ab=(0.45,0.9,0.2,0.35), 𝜑̂𝑎𝑏 =(0.24,0.03,0.25,0.64) and 𝜐̂𝑎𝑏 = (0.10,0.04,0.29,0.05) with assign weight 

𝜙𝑏 =(0.15,0.20,0.25,0.18) 

 

(

 
 
 
 

∏ (1 + (ξ − 1)μ̂b)
ϕb −∏ (1 − μ̂b)

ϕbs
b=1

s
b=1

∏ (1 + (ξ − 1)μ̂b)
ϕbs

b=1 + (ξ − 1)∏ (1 − μ̂b)
ϕbs

b=1

,
ξ ∏ (φ̂b)

ϕbs
b=1

∏ (1 + (ξ − 1)φ̂b)
ϕb +∏ (φ̂b)

ϕbs
b=1

s
b=1

,

ξ∏ (υ̂b)
ϕbs

b=1

∏ (1 + (ξ − 1)υ̂b)
ϕb +∏ (υ̂b)

ϕbs
b=1

s
b=1 )

 
 
 
 

α̂a  

Serial No Symptoms Abbreviation 

1 
2. 
3. 
4. 
5. 
6. 
7. 

Tension and anxiety 
Anger 
Aggression 
High blood pressure 
Inability to relax 
Excessive alcohol/tobacco use 
Forgetfulness & increased absenteeism 

TAT 
ANG 
AGG 
HBP 
ITR 
EAL 
FIA 
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=(0.5153,0.1583,0.1679). By similar way 𝛼̂2, 𝛼̂3  𝛼̂4  , 𝛼̂5 , 𝛼̂6  𝑎𝑛𝑑 𝛼̂7 are obtained as follows: 𝛼̂2= (0.4108, 

0.5328, 0.0247), 𝛼̂3 = (0.5922, , 0.1175, 0.2894), 𝛼̂4 = (0.3511, 0.2458, 0.1681), 𝛼̂5=  (0.4882,0.1249,0.2344), 

𝛼̂6 =(0.3542, 0.2349, 0.1067) and 𝛼̂7 = (0.2486, 0.1354, 0.0158).  

 Step 3. By using the equation above 13, the score values 𝑆̂(𝛼̂𝑎), (𝑎 = 1,2,3,4,5,7) of the overall PFIs 𝛼̂𝑎, 

(𝑎 = 1,2,3,4,5,7) are obtained as follows  

𝑆̂(𝛼̂1) = 0.5153 – 0.1679 = 0.3474. Similarly, Ŝ(α̂2) = 0.3861,  𝑆̂(𝛼̂3) = 0.3028,  𝑆̂(𝛼̂4) = 0.1830, 𝑆̂(𝛼̂5) = 

0.2538, 𝑆̂(𝛼̂6) = 0.2457 and 𝑆̂(𝛼̂7) = 0.2300. 

Step 4. The ranking order of 𝜑𝑎  (𝑎 = 1,2,3,4,5,6,7) in accordance with the value of the score functions  

𝑆̂(𝛼̂𝑎), (𝑎 = 1,2,3,4,5,7) of the overall PFIs is as follows: 𝜑2 > 𝜑1 > 𝜑3 > 𝜑5 > 𝜑6 > 𝜑7 > 𝜑4. 

Step 5. the first diagnosis will be focused on 𝜑2. 

Step 6. Stop. 

In comparisons with other existing methods (manual methods), the ranking order of alternatives is slightly 

different but the optimum alternative is more desirable and focuses on this method. Thus, the proposed 

method is stable and can be applied by any professional that has the machine that gives first aid diagnosis. 

3. Conclusion 

Our system has better advantages over the traditional approach of analyzing psychopathological 

conditions. The result is efficient in detecting the areas where the diagnosis should be focused. It thus 

proves to be a better tool that will aid physicians in medical decision process.  
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 Abstract 

  1 | Introduction  

Uncertainty is a part and parcel of our daily life activities and it exists in various forms. The 

classical set-theoretic approach could not find any way to deal with incomplete information i.e 

the information which is blurred. For the scientific computation of vague data, we need a 

powerful tool that gives us a precise idea about objects so that we get insight into the objects and 

classify them into different groups. Finally, fuzzy set theory was introduced by Zadeh [24] in 1965 

for dealing with uncertain, incomplete, indeterministic information in a systematic way. After the 

introduction of fuzzy set theory, it has been used successfully in various fields such as engineering, 

social science, computer science, control theory, game theory, pattern recognition, logic, etc. In 

the fuzzy set, every object has some membership value and it is called the degree of membership 

and each membership value belongs to the unit closed interval [0, 1]. So, a fuzzy set is an extension 

of a crisp set where there are only two choices (0 or 1) to denote the membership of an object i.e 
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we choose 1 for belongingness and 0 for non-belongingness of an object. Compared to classical set, by 

using fuzzy set theory we are enabled to extend the range of domain under the fuzzy environment where 

each object is a fuzzy word or fuzzy sentence or fuzzy axiom, etc. It gives a general formula to model 

vague or uncertain or indeterministic or incomplete concepts lucidly. But we know that every theory has 

its limitations so does fuzzy theory. Using fuzzy theory, we only determine the degree of membership 

of an object but, there is no scope of non-membership degree. We have experienced the co-existence 

of two opposite concepts like agreement-disagreement, truth-falsity, success-failure, yes-no, attraction-

repulsion in a real-life scenario to make a balance. Like this, there is a demand for the coexistence of 

membership value and non-membership value. To realize the importance of non-membership value 

along with membership value another set-theoretical notion known as Intuitionistic Fuzzy Set (IFS) was 

introduced by Atanassov [5] in 1986. In IFS, every object has two values i.e membership value and non-

membership value, and their sum range from 0 to 1. For the need of the hour, fuzzy set theory has been 

applied successfully to develop new theories, propositions, axioms, etc. Some of them are given in [6], 

[10], [11], [12], [25], [26].  

Due to the more complex like uncertainty in data the fuzzy set and its variants are not sufficient for 

mathematical modeling. It is due to the parameters involved in an attribute. To handle parametric data 

comprehensively we need another tool to solve the issue. This creates the invention of the Soft Set (SS). 

Soft set theory was introduced by Molodtsov [16] in 1999. It gives more rigidity to model the vague 

concept in a parametric way. It is the more general framework as compared to the fuzzy set and its 

variants. The soft set has been progressed more rapidly and applied in different fields with great success. 

Some of the novel’s work on soft set theory given in [3], [4], [7], [8], [14], [15]. In 2001, a new concept 

known as Fuzzy Soft Set (FSS) was introduced by Maji et al. [13]. FSS is a combination of Fuzzy Set 

(FS) and SS. Some applications and extensions of FSS are given in [9], [17], [21], [22]. 

Recently, Smarandache [20] generalize the concept of the soft set to the hypersoft set, where the function 

F is transformed into a multi-attribute function. The main motivation of using Hypersoft Set (HSS) is 

that when the attributes are more than one and further bisected, the SS environment cannot be applied 

to handle such types of cases. So, there is a worth need to define a new approach to solve these. 

Afterward, Saeed et al. [19] studied the fundamentals of hypersoft set theory, Abbas et al. [1] defined 

the basic operations on hypersoft sets, Yolcu and Ozturk [23] introduced fuzzy hypersoft set and its 

application in decision-making, Ajay and Charisma [2] defined neutrosophic hypersoft topological 

spaces, aggregate operators of neutrosophic hypersoft set studied in [18], Extension of TOPSIS method 

under intuitionistic fuzzy hypersoft set environment is discussed in [27], some fundamental operations 

on interval-valued neutrosophic hypersoft set are discussed in [28]. 

In this work, we have used the notion of the Fuzzy Hypersoft Set (FHSS), which is an amalgamation of 

the FS and HSS. Afterward, we define different set-theoretic operations on them, and then there is an 

attempt to use this concept effectively in multi-criteria decision-making problems using weightage 

aggregate operator. 

2 | Preliminaries 

This section includes some basic definitions with examples that are relevant for subsequent discussions. 

Definition 1. [24] and [26]. Let X  be a non-empty set. Then a fuzzy set A , defined on X , is a set 

having the form    AA x, μ x : x X  , where the function  Aμ : X 0,1  is called the membership 

function and  Aμ x  is called the degree of membership of each element x X .  
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Definition 2. [16]. Let U  be an initial universe and E  be a set of parameters. Let  P U denotes the power 

set of U , and A E . Then the pair  F, A  is called a soft set over U , where F  is a mapping given by 

 F : A P U . 

Definition 3. [13]. Let U  be an initial universe and E  be a set of parameters. Let UI  be the set of all 

fuzzy subsets of U , and A E . Then the pair  F, A  is called a fuzzy soft set over U , where F  is a 

mapping given by UF : A I . 

Definition 4. [20]. Let ξ  be the set of the universe and  P ξ  denotes the power set of ξ . Consider

1 2 nl , l , ......., l , for n 1 , be n  well-defined attributes, whose corresponding values are respectively the set 

1 2 nL ,L ,.......,L  with i jL L  , for i j and  i , j 1,2, ......,n , then the pair  1 2 nF ,L L ....... L    is said 

to be hypersoft set over ξ , where  1 2 nF : L L ....... L P ξ    . 

Example 1. Let  1 2 3 4U c ,c , c , c  be the set of the universe of cars under consideration and  1 3A c ,c U 

. We consider the attributes to be 
1x  size, 

2x  color, 
3x  cost price (in a dollar), 

4x mileage,and 
5x   

model, and their respective values are given by Size=
1X {small, medium, big}; color =

2X 

{white, black, red}; cost price (in dollar)=
3X  {1000,1050,1080};  model=

4X  {honda amaze, tata 

tigor, ford figo}. 

Let the function be:  1 2 3 4F : X X X X P U    . In respect of A , one has assumed that F  ({small, 

white, 1000, Honda amaze}, {small, white, 1000, tata tigor}, {small, white, 1000, ford figo}, {small, white, 

1050, Honda amaze}, {small, white, 1050, tata tigor}, {small, white, 1050, ford figo}, {small, white, 1080, 

Honda amaze}, {small, white, 1080, tata tigor}, {small, white, 1080, ford figo}, {small, blue, 1000, 

Honda amaze}, {small, blue, 1000, tata tigor}, {small, blue, 1000, ford figo}, {small, blue, 1050, 

Honda amaze}, {small, blue, 1050, tata tigor}, {small, blue, 1050, ford figo}, {small, blue, 1080, 

Honda amaze}, {small, blue, 1080, tata tigor}, {small, blue, 1080, ford figo}, {small, red, 1000, 

Honda amaze}, {small, red, 1000, tata tigor}, {small, red, 1000, ford figo}, {small, red, 1050, 

Honda amaze}, {small, red, 1050, tata tigor}, {small, red, 1050, ford figo}, {small, red, 1080, 

Honda amaze}, {small, red, 1080, tata tigor}, {small, red, 1080, ford figo}, {medium, white, 1000, 

Honda amaze}, {medium, white, 1000, tata tigor}, {medium, white, 1000, ford figo}, {medium, white, 

1050, Honda amaze}, {medium, white, 1050, tata tigor}, {medium, white, 1050, ford figo}, {medium, 

white, 1080, Honda amaze}, {medium, white, 1080, tata tigor}, {medium, white, 1080, ford figo}, 

{medium, blue, 1000, Honda amaze}, {mediuml, blue, 1000, tata tigor}, {medium, blue, 1000, ford figo}, 

{medium, blue, 1050, Honda amaze}, {medium, blue, 1050, tata tigor}, {medium, blue, 1050, ford figo}, 

{medium, blue, 1080, Honda amaze}, {medium, blue, 1080, tata tigor}, {medium, blue, 1080, ford figo}, 

{medium, red, 1000, Honda amaze}, {medium, red, 1000, tata tigor}, {medium, red, 1000, ford figo}, 

{medium, red, 1050, Honda amaze}, {medium, red, 1050, tata tigor}, {medium, red, 1050, ford figo}, 

{medium, red, 1080, Honda amaze}, {medium, red, 1080, tata tigor}, {medium, red, 1080, ford figo}, 

{big,white, 1000, Honda amaze}, {big, white, 1000, tata tigor}, {big, white, 1000, ford figo}, {big, white, 

1050, Honda amaze}, {big, white, 1050, tata tigor}, {big,white, 1050, ford figo}, {big,white, 1080, 

Honda amaze}, {big, white, 1080, tata tigor}, {big, white, 1080, ford figo}, {big, blue, 1000, 

Honda amaze}, {big, blue, 1000, tata tigor}, {big, blue, 1000, ford figo}, {big, blue, 1050, Honda amaze}, 

{big, blue, 1050, tata tigor}, {big, blue, 1050, ford figo}, {big, blue, 1080, Honda amaze}, {big, blue, 1080, 

tata tigor}, {big, blue, 1080, ford figo}, {big, red, 1000, Honda amaze}, {big, red, 1000, tata tigor}, {big, 

red, 1000, ford figo}, {big, red, 1050, Honda amaze}, {big, red, 1050, tata tigor}, {big, red, 1050, 

ford figo}, {big, red, 1080, Honda amaze}, {big, red, 1080, tata tigor}, {big, red, 1080, ford figo})= 1 3c , c .  
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Thus, there are 81 possible hypersoft sets to describe  1 3c , c .   

Definition 5. [23]. Let ς  be the universe of discourse and  P ς  be the power set of ς . Suppose 

1 2 nl ,l , .......,l ,  for n 1 , be n  well-defined attributes, whose corresponding values are respectively the set 

1 2 nL ,L ,.......,L  with i jL L  , for i j  and  i , j 1,2, ......,n , and 1 2 nL L ....... L S    , then the 

pair  F ,S  is said to be the FHSS over ς , where  1 2 nF : L L ....... L P ς     and 

     1 2 n

SΓ F L L ....... L x, μ F S : x ς      , where μ  is the membership function which 

determines the value of the degree of belongingness and  μ : ς 0,1 . 

Example 2. Let us consider an example where we have proposed a data set that is suitable for selecting 

a plot of land by the decision-makers. Suppose ς  be the set of decision-makers to decide the best plot. 

We consider   1 2 3 4 5ς d ,d ,d ,d ,d  and   1 3 5A d ,d ,d ς . 

Now we consider the sets of attributes as 1P = plot size (in sq. ft), 2P = plot location, 3P = cost of the 

plot (in dollars), and 4P = landmark surrounding of a plot. Their corresponding values are given as  

 1P 2000,1745,1100,900,1245 , 2P {Agartala, Lucknow, Amritsar, Greater Noida, Hooghly}, 

 3P 4135,3812,3907,2547  and 4P {shopping mall, Railway Station, Airport, Multi specialist 

Hospital, Highway}. 

Therefore,     1 2 3 4F : P P P P P ς . 

We consider the following tables to assign their membership values: 

 Table 1. Decision making fuzzy values for the size of the plot. 

 

 

 

 

Table 2. Decision making fuzzy values for the location of the plot. 

 

 

 

 

 Table 3. Decision making fuzzy values for the cost of the plot. 

 

 

 

(Plot size in sq. ft)
 

1d 5d
 

2d
 

3d
 

4d
 

 

2000 0.6 0.5 0.7 0.4 0.8 
1745 0.6 0.9 0.1 0.5 0.5 
1100 0.6 0.7 0.4 0.8 0.5 
900 0.3 0.2 0.5 0.6 0.2 
1245 0.5 0.7 0.8 0.6 0.8 

(Plot location) 1d
 

2d
 

3d
 

4d
 

5d
 

Agartala 0.8 0.9 0.7 0.8 0.9 
Lucknow 0.7 0.8 0.6 0.7 0.6 
Amritsar 0.6 0.8 0.5 0.6 0.8 
Greater Noida 0.4 0.3 0.2 0.3 0.2 
Hooghly 0.8 0.6 0.5 0.7 0.9 

(Plot cost in sq. ft) 1d
 

2d
 

3d
 

4d
 

5d
 

4135 0.5 0.4 0.8 0.5 0.7 
3812 0.8 0.6 0.8 0.6 0.8 
3907 0.8 0.4 0.8 0.6 0.9 
2547 0.6 0.6 0.5 0.7 0.6 
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 Table 4. Decision making fuzzy values for the landmark surrounding of a plot. 

 

 

 

Then for the set  1 3 5A d ,d ,d , we define the fuzzy hypersoft in the following way: 

F = {1100, Agartala, 3812, shopping mall} =        

       

       

1d , 1100,0.6 , Agartala,0.8 , 3812,0.8 , Shopping Mall ,0.7 ,

3d , 1100,0.4 , Agartala,0.7 , 3812,0.8 , Shopping Mall ,0.8 ,

5d , 1100,0.5 , Agartala,0.9 , 3812,0.8 , Shopping Mall ,0.8

 
 
 
 
 
 
 
  

 

Similarly, we can construct    5 5 4 5 500 such fuzzy hypersoft sets for the set A  as per the attribute 

values are concerned. To find these 500 sets manually is a very tedious job but with the blessings of Data 

Science the computing and the storage process are very easy to practice and we use it for various practical 

purposes. So, with an aid of hypersoft set, there is a lot of choices made by the decision-makers among 

which we fix with one choice that is suitable for use in all perspective. Such type of facility is not available 

if we use the fuzzy soft set. So, the concept of a fuzzy hypersoft set gives us a scope to enhance our critical 

thinking systematically. Also, by using it we redefine or extend the earlier concepts by introducing various 

properties on fuzzy hypersoft sets and all these properties are more generalized as compared to the other 

existing set theories.  

It is to be noted that the set of all fuzzy hypersoft sets over   is denoted by  ςFHSS . 

3 | Different Types of Fuzzy Hypersoft Sets and Their Properties 

Definition 6. Let  ςSΓ FHSS , where    1 2 nL L ....... L S . If  x ς , S  then 
SΓ  is called an FHS-

null set and it is denoted by 
Γ . 

Definition 7. Let  ςSΓ FHSS , where    1 2 nL L ....... L S . If S is a crisp set and  x ς , SΓ ς  then 

SΓ  is called the FHS-universal set and it is denoted by 
UΓ . 

Definition 8. Let  ςS TΓ ,Γ FHSS . Then 
SΓ  is said to be an FHS-subset of 

TΓ  i.e S TΓ Γ  iff S T , 

and      μ F S μ F T . 

Proposition 1. For  ςS T RΓ ,Γ ,Γ FHSS , we have the following results: 

1) S TΓ Γ  and   T S S TΓ Γ Γ Γ . 

2) S TΓ Γ and   T R S RΓ Γ Γ Γ . 

3) 
 SΓ Γ  and S UΓ Γ  

Definition 9. Let  ςSΓ FHSS . Then the complement of 
SΓ  is denoted by  

c

SΓ  and it is defined as

       
c

SΓ x,1 μ F S : x ς . 

 (Landmark surrounding of a plot) 1d
 

2d
 

3d
 

4d
 

5d
 

Shopping Mall 0.7 0.6 0.8 0.5 0.8 
Railway Station 0.6 0.4 0.5 0.8 0.7 
Airport 0.5 0.7 0.6 0.8 0.7 
Multispecialist Hospital 0.3 0.7 0.5 0.4 0.7 
Highway 0.4 0.7 0.6 0.6 0.8 
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Definition 10. Let  ςS TΓ ,Γ FHSS . Then their union is denoted by S TΓ Γ  and is defined by 

 

 

 

Definition 11. Let  ςS TΓ ,Γ FHSS . Then their union is denoted by S TΓ Γ and is defined by 

 

 

. 

Proposition 2. We have the following propositions that are based on FHS-complementary set: 

1)   
cc

S SΓ Γ . 

2)   
c

Γ ς (in case of crisp set).  

3) (iii)    
c c c

S T S TΓ Γ Γ Γ  and    
c c c

S T S TΓ Γ Γ Γ  (De Morgan Laws). 

4) (iv)    S S T SΓ Γ Γ Γ  and    S S T SΓ Γ Γ Γ  (Absorption Laws). 

Proposition 3. For  ςS T RΓ ,Γ ,Γ FHSS , we have the following results: 

1) S TΓ Γ = T SΓ Γ  and S TΓ Γ = T SΓ Γ (Idempotent Laws). 

2)   S T RΓ Γ Γ =   S T RΓ Γ Γ  and   S T RΓ Γ Γ =   S T RΓ Γ Γ  (Associative Laws). 

3)   S T RΓ Γ Γ =      S T S RΓ Γ Γ Γ and   S T RΓ Γ Γ =      S T S RΓ Γ Γ Γ  

(Distributive Laws). 

4 | Weightage of Fuzzy Hypersoft Set in Decision Making 

In example 2, we have determined only one fuzzy hypersoft set though there are 500 different choices 

available. As we know that computer science is an integral part of Mathematics, then by using suitable 

software or programming we can easily enumerate all these 500 different sets within few minutes as it is 

quite difficult to do manually. That's why here we avoid such lengthy calculations. But we need an 

operator by which we can select the best alternative for the customer among these 500 cases. Without 

any proper decision-making of all the items we do not say, this or that is the best choice or there may 

be multiple choices for the customer. For that purpose, we need to find the weightage of each fuzzy 

hypersoft set by using the following operator. 

 

 

      

  

  

   


 
   

 
 

 

S T

x,max μ F S ,μ F T : x S T

Γ Γ x,μ F S , if x S

x,μ F T , if x T

  

      

  

  

   
 
 

   
 

 
 

S T

x,min μ F S ,μ F T : x S T

Γ Γ x,μ F S if x S

x,μ F T if x T

  

 
  

 
n i

FVi 1

1
Ω max μ d Ξ .

FHSS ς
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Where  FHSS ς =number of fuzzy hypersoft sets over ς ,   imax μ d =maximum fuzzy membership 

value concerning for to the decision-makers, and FVΞ =number of fuzzy attribute values corresponding 

to the set of attributes. 

We have to determine Ω for every each possible fuzzy hypersoft set of the given problem. Afterward, we 

choose the best choice for the client which has the maximum weightage. In case of a tie, there may be 

multiple choices for a client. In such a case, he or she may choose any one of the suitable choices. 

5 | Application 

There is a huge scope of the use of hypersoft set in different areas such as forecasting, business 

management, traffic control, similarity measures, neural networking, data science, sociology, etc. 

6 | Conclusions 

Here we have used the novel concept known as a hypersoft set which was introduced by F. Smarandache 

in 2018. By combining the fuzzy set and hypersoft set a new theory called fuzzy hypersoft set is introduced 

in [23]. The Fuzzy hypersoft set is a more generalized form of fuzzy set, soft set, fuzzy soft set, etc. In this 

article, an attempt has been made to study fuzzy hypersoft set and their kinds and discuss some set-

theoretic operations and propositions on them. With the help of a valid and concrete example, it also 

shown that how this concept is more effective in multi-criteria decision-making problems compared to 

other existing theories. In future, it has a wide range of application in the fields of topology, game theory, 

computer science, neural network, decision-making etc.  
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Abstract 

  

1 | Introduction  

The emergence of COVID-19 (coronavirus disease 2019) in December, 2019 has shaken and 

brought the whole world for some weeks/months of lockdown due to extreme loss of lives [1]. 

COVID-19 is a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [2]. SARS-CoV-

2 is highly contagious and has presented a major global health threat [3]. Reports from the World 

Health Organization (WHO) indicate that the world records 10,357,662 confirmed cases of 

COVID-19 with 508,055 deaths until July 1st, 2020, 6:08 pm CEST [1]. It is therefore incumbent 
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on the Governments, private organizations and individuals to take necessary steps to combat this global 

pandemic.  

COVID-19 is known to emanate from Wuhan, China with rapid spread to surrounding countries such 

as Korea, Thailand and Japan, and from there to Europe, America, and later to Africa [4]. The most 

affected countries in Africa are South Africa, Egypt, Nigeria and Ghana respectively. Here, the focus is 

on Nigeria, the most populous country in Africa with population of over 200 million people, which 

contributes to about 2.64% of the world population. The Nigeria Center for Disease Control (NCDC) 

recorded the first case of coronavirus in Nigeria on February 28th, 2020 and the first death on March 

23rd, 2020. Currently, Nigeria is experiencing a steady but exponential growth in the confirmed cases of 

COVID-19 across the country. As reported on July 1st, 2020, 6:08 pm CEST, the number of 

confirmed cases of COVID-19 in Nigeria have risen to 25,694 with 590 deaths, making Nigeria the 

third most affected country in Africa.  

To curb the propagation of COVID-19, cities in Nigeria and other African countries have been locked 

down for weeks until recently, with a gradual easing of the lockdown. In Nigeria, the NCDC provided 

strict preventive measures, such as washing of hands thoroughly and frequently with soap under 

running water, quarantining symptomatic persons and isolating infected persons, promoting social 

distancing and wearing of facemask especially in public places for self-protection. Other ways to 

curtail the spread of COVID-19 included restrictions on public gathering, travelling (banned interstate 

travelling) except for essential workers, closing of schools, and offices. Exclusions were however 

granted to grocery stores, pharmacies, public markets, and other stores selling food and essential 

products. There was a complete lockdown in major cities like Abuja - the Federal Capital Territory, 

Lagos and Ogun states and later in all the states of the federation. Despite these preventive efforts, the 

COVID-19 cases in Nigeria are gradually increasing and steps must be taken to accurately predict the 

COVID-19 pandemic. In this study, the use of intuitionistic fuzzy set to predict COVID-19 pandemic 

cases in Nigeria is proposed. The objective of this study is to ascertain the performance of hesitation-

enabled intuitionistic fuzzy set on the prediction of COVD-19 pandemic and to compare its 

performance with the traditional fuzzy set and artificial neural network. To the best knowledge of the 

authors, this is the first study that predict COVID-19 pandemic cases using intuitionistic fuzzy logic 

system that utilizes intuitionistic fuzzy sets with optimized parameters. 

The rest of the paper is organized as follows: Section 2 has the literature review while Section 3 discusses 

the methodology adopted to solve the COVID-19 prediction problem. Performance evaluation is 

presented in Section 4 while conclusion is drawn in Section 5.   

2 | Literature Review 

Many studies have been conducted for the prediction of COVID-19 pandemic all over the world. For 

instance, Bastos and Cajueiro [5] forecasted the early evolution of COVID-19 in Brazil using two 

modified versions of the Susceptible-Infected Recovered (SIR) epidemic model. The data for the 

forecast was collected from February 25th, 2020 to March 30th, 2020 and the results from their short-

term forecast were in tandem with the collected data. In the same vein, Pandey et al. [3] proposed the 

use of Susceptible, Exposed, Infectious, recovered (SEIR) and regression models to predict the COVID-

19 confirmed cases in India. The two models were found to effectively analyze and predict COVID-19 

disease in India. 

However, according to [6], COVID-19 has some characteristic features that are quite distinct from 

other existing infectious diseases. These features make it difficult to apply SIR and SEIR models 

directly to COVID-19 data. Therefore, Zhao and Chen [6] proposed the Susceptible, Un-quarantined 

infected, quarantined infected, Confirmed infected (SUQC) model. The authors noted that the SUQC 

is able to characterize the dynamics of COVID-19 and provided accurate prediction on the test data 

better than other epidemic models. Patra et al. [2] presented long short-term memory (LSTM) networks 

for the prediction of COVID-19 data in India, USA, Argentina and Brazil. The authors adopted 90% of 
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the data for the countries under study as training data while 10% was used as test data. The results of 

LSTM were compared with convolutionary neural network and nonlinear autoregressive time series and 

found to outperform both in terms of the nine-error metrics adopted for the study. Roosa et al. [7] 

proposed a COVID-19 epidemic forecast in China that operates in real time from February 5th to February 

24th, 2020 using the sub-epidemic model. Their proposed sub-epidemic model was compared with 

generalized logistic growth model and Richards’s model and found to provide a good forecast in terms of 

the mean squared error. Anastassopoulou et al. [8] adopted the Susceptible-Infectious-Recovered-Dead 

(SIRD) epidemic model in the prediction of COVID-19 outbreak in Hubei, China. The data was collected 

from a publicly available database from January 11th to February 10th, 2020 and analysis of results show 

that the evolution of the COVID-19 pandemic was within the bounds of the forecast. 

As a global pandemic, prediction of COVID-19 outbreak has been conducted for several other 

countries including Canada [9], Saudi Arabia [10], Italy, Spain and France [11], Brazil [5] and [12], 

Hungary [13], Italy [14] and [15] Malaysia [16], Japan [17], Iran [18] and more. Petropoulos and Makridakis 

[19] presented a statistical forecast of COVID-19 confirmed cases using robust time series. The COVID-

19 data collected consisted of cumulative daily figures aggregated globally and captured three cases namely: 

confirmed cases, deaths and recoveries. The data was obtained from John Hopkins University of daily 

cumulative cases from January 22, 2020 to March 11, 2020. Simple time series from the family of 

exponential smoothing was adopted and shown to produce good forecast. According to [8], the official 

data provided for COVID-19 is highly uncertain and according to [20], fuzzy logic is a 

concept that connotes uncertainty and can adequately model the same. This calls for the utilization of fuzzy 

logic tools that can adequately cope with uncertainty in the COVID-19 data. To achieve this, 

many researchers have adopted and integrated fuzzy logic in the prediction models. For instance, Patra et 

al. [2] has proposed the use of multiple ensemble neural network models with fuzzy response aggregation 

for the prediction of the COVID-19 time series in Mexico. The main essence of the integration of fuzzy 

response aggregation was to manage the uncertainty occasioned by the individual networks, thus leading 

to lower uncertainty. The proposed approach was shown to provide good estimation when compared with 

the actual values and other prediction models. Al-Qaness et al. [21] proposed the use of adaptive neuro-

fuzzy inference system (ANFIS) optimized with flower pollination algorithm (FPA) and salp swarm 

algorithm (SSA) to estimate and forecast the confirmed cases of COVID-19 in China. According to the 

authors, the performance of FPASSA-ANFIS in terms of the predicted values of the confirmed COVID-

19 is very high and outperforms other models in terms of RMSE, MAE, MAPE, root mean squared relative 

error (RMSRE), coefficient of determination (R2) and computing time. Other studies such as Dhiman and 

Sharma [22] proposed a fuzzy logic inference for identification and prevention of COVID-19. Fong et al. 

[23] proposed the use of hybridized deep learning and fuzzy rule induction for the analysis of COVID-19 

outbreak. Fatima et al. [24] presented Internet of Things (IoT) which enabled smart monitoring of 

COVID-19 with associated fuzzy inference system. Verma et al. [25] applied arima and fuzzy time series 

models while Van Tinh [26] utilized fuzzy time series model in combination with particle swarm 

optimization for COVID-19 prediction. 

All the previous works make use of classical type-1 fuzzy logic systems (FLSs) for the prediction of 

COVID-19 outbreak with the aim of modelling uncertainty in the data. The classical FLS can only 

handle uncertainty by defining membership functions with the assumption that every non-membership 

function is complementary to the membership function. This assumption may not always be correct, 

as there may be some hesitations surrounding membership and non-membership functions of an 

element to a set. Kumar [27] put it clearly that the hesitation occurring in the membership degrees cannot 

be integrated in a fuzzy set theory.   

To this end, the use of intuitionistic fuzzy set (IFS) introduced in 1999 by Atanassov [28] for the prediction 

of COVID-19 pandemic cases in Nigeria is proposed in this study. An IFS is a fuzzy set format that is 

defined using both Membership Functions (MFs) and Non-Membership Functions (NMFs), which are 

independent from each other, with extra parameter known as the hesitation degree (index). 
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Literature is replete with studies involving IFS such as prediction and time series forecasting [20,] [29], 

[30], [31], [32], [33], [34], and [35], multi-criteria decision making [36], control [37], temporal fault trees 

analysis [38], system failure probability analysis [39], data envelopment analysis [40], estimating 

correlation coefficient between IFSs with hesitation index [41] and more. The motivation behind this 

study is that by using IFLS to analyze COVID-19 pandemic data, more information will be captured 

and uncertainty efficiently handled. Moreover, the IFSs enable hesitation which is preponderant in 

humanlanguage representation, thus providing more adequate and concordant solutions to the real-

world (COVID-19) problem than its classical counterpart in terms of providing better advantages in 

handling vagueness and uncertainty. For instance, Khatibi and Montazer [42] adopted the classical FS 

and IFS in medical diagnosis for the detection of intestinal bacteria that causes typhoid fever and 

dysentery by using different similarity measures of FS and IFS. According to the authors, although both 

Fs and IFS are strong tools for uncertainty modeling, analyses in Khatibi and Montazer [42] show that 

IFS provided more accurate results than the classical FS. According to [39], the IFS, defined with 

separate membership and non-membership degrees has much wider range of applicability than 

traditional fuzzy set theory. In otherwords, as Rahman et al. [43] state, IFS stands as an important tool 

in managing with imprecision. 

 Themaincontribution of this paper, therefore is the adoption of parameter optimized intuitionistic fuzzy 

logicsystem (IFLS) which captures some level of hesitation in the MFs and NMFs. The inclusion of the 

intuitionistic fuzzy index in the COVID-19 pandemic prediction provides flexibility and tends to agree 

with human reasoning and information representation better. The integration of hesitation index 

component in the modelling of uncertainty in COVID-19 data is an interesting direction followed in 

this analysis. To aid comparison, the traditional type-1 fuzzy logic system is also constructed and 

evaluated using the COVID-19 pandemic cases. 

3 | Methodology 

In this section, the traditional type-1 FS is briefly discussed. The IFS, IFLS and parameter update for 

IFLS MF and NMF are derived. The datasets used for evaluating the proposed model are also 

described. 

3.1 | Fuzzy Sets (Classical Fuzzy Set and Intuitionistic Fuzzy Set) 

The classical FS introduced by Zadeth [44] is an extended version of the traditional binary set. Unlike 

binary set with 0 or 1 membership value, FS membership falls in a closed interval [0, 1]. 

Definition 1. A classical FS is characterised by only the MF,  Aμ x which specifies the degree of 

belonging of an element to a set, i.e.,    AA x, μ x x X   . 

Any system that adopts one or more type-1 FS is known as type-1 FLS. This assumption may not be 

applied to every situation as they may be some hesitation from the expert in determining the degree of 

membership of an element to a set. This extra parameter may not simply be classified as MF or NMF. 

This calls for another kind of FS known as the IFS which provides some flexibility in terms of the 

hesitation degree. Thus, the IFS is an extended version of the traditional type-1 FS.  

Definition 2. [28]. An IFS is defined by both MF, *A
μ ( x )  ∈ [0,1] and NMF, *A

ν ( x ) ∈ [0,1] such that  

0 ≤ *A
μ ( x ) + *A

ν ( x )   1. 
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An IFS has an additional parameter called the hesitation index,  π x  such that 

      * * *A A A
π x 1 μ x ν x   . Obviously, when     * *A A

μ x ν x 1  , a traditional type-1 FS is obtained. 

Radhika and Parvathi [45], Hájek and Olej [46] and Mahapatra and Roy [47] have formulated ways of 

defining the MF and NMF of an IFS. In this 

work, the MF and NMF (see Fig. 1) are defined following the approach in [45] using Gaussian 

function as follows: 

 

Fig. 1. Intuitionistic fuzzy set [48]. 

where  μ x  is the MF and  ν x  is the NMF,  x  is the input, σ  and c  are the standard deviation and 

center of the IFS respectively while  π 0,1  is the hesitation index, otherwise known as intuitionistic fuzzy 

index. For all the experiments, the hesitation index was chosen as 0.1. A system that uses IFS in either its 

antecedent and/or consequent part(s) is known as IFLS. 

3.2 | Intuitionistic Fuzzy Logic System 

An IFLS (see Fig. 2) possesses the same functionalities as the traditional FLS namely: the fuzzifier, rule 

based, inference engine and defuzzifier. The only exception is that the different parts are intuitionistic 

based (with hesitation indices). 

3.2.1 | Fuzzification 

Similar to the classical FS, fuzzification involves converting crisp inputs into MFs and NMFs which are 

fed into the intuitionistic inference engine and translated into intuitionistic fuzzy output set. Here, singleton 

fuzzification is assumed. That is, μ
A*(x)= {

1/1          if x=x'

1/0         if x≠x'
. 

 
  

 
   
  
 

2

i ik

ik i 2

x c
μ x exp π,

2σ
 (1) 

 
  

 
   
  
 

2

i ik

ik i 2

x c
ν x 1 exp ,

2σ
 (2) 
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Fig. 2. Intuitionistic fuzzy logic system [48]. 

3.2.2 | Rules 

The generic rule structure of IFLSs is as below 

 

Which can be reformulated for MF and NMF as follows: 

 

 

Where x ’s represent the inputs, 
ky ’s are rule’s outputs, *A ’s are IFSs,  w  represents the weight and 

b , the bias. Once the intuitionistic fuzzy rules are established, the IFLS can be seen as a mapping from 

inputs to outputs with the mapping quantitatively represented as  y f x .  

3.2.3 | Inference 

This study adopts a Takagi-Sugeno-Kang (TSK) inference. Here the IF-THEN rules in the rule base are 

combined into a mapping from an input linguistic vector to an output variable, y. For TSK inference, 

the output is a linear combination of the inputs.  

kR :  if 
ix  is 

*

ikA  and … and 
nx  is 

*

nkA  then 
ky  = 




n

ik i ki 1
w x b . (3) 

μ

kR : if 
ix  is 

*μ

ikA  and … and 
nx  is 

*μ

nkA   then 
μ

ky  = 



n μ μ

ik i ki 1
w x b , (4) 

ν

kR : if 
ix  is 

*ν

ikA  and … and 
nx  is 

*ν

nkA then 
ν

ky  = 



n ν ν

ik i ki 1
w x b . (5) 
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3.2.4 | Defuzzification 

In order to obtain a crisp value for the output of a FLS, the defuzzification procedure is often 

employed. This work adopts the defuzzification method proposed in [49] where the outputs of each 

subsystems (MF and NMF) are computed and then combined to produce the final output. Hájek and Olej 

[49] defined the final output of a TSK-type IFLS as follows: 

Where: 

and 

And μf% and νf%  are normalized firing magnitude for MFs and NMFs respectively while β  is the user 

defined parameter which controls how much MF and NMF support the final output. The MF alone 

contributes to the final output if β  is 0  and NMF alone contributes to the final output if β  is 1 . However, 

when 0 β 1  , the output is formed by both MFs and NMFs. 

3.3 | Parameter Update 

The problem under investigation is an optimization problem and requires adjustment of the parameters of 

the MF and NMF of the IFLS. The popular Gradient Descent (GD) back propagation algorithm is used 

to optimize these parameters. The cost function for a single output is defined as 

Where ay  is the actual output and y  is the predicted output. The parameters of IFLS to be updated 

include the center, c  , standard deviation, σ , weight, w , bias, b  and β . 

For GD optimization, any generic parameter,  θ , can be updated as follows 

Where γ is the learning rate that controls the learning process and must be chosen carefully to avoid 

instability or slow learning. The parameters of the consequent parts include the weights ( w ) and biases 

( b ) and updated as follows: 

 
 

   % %M Mμ μ ν ν

k kk 1 k 1
y 1 β f y β f y . (6) 






%

μ
μ k

M μ

kk 1

f
f

f
, (7) 






%
ν

ν k

M ν

kk 1

f
f .

f
 (8) 

  
2a1

E y y .
2

 (9) 

     ik ik

ik

δE
θ t 1 θ t γ .

δθ
 (10) 
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and  

 

 

 

Respectively, the derivative with respect to the weight is computed as in Eq. (13) and Eq. (14).  

 

 

 

While the derivative with respect to the bias is as in Eq. (15) and Eq. (16) respectively. 

 

 

 

 

 

The Gaussian function is adopted to construct the MF. 

 

  

The Gaussian function in Eq. (17) is modified as in Eq. (18) and Eq. (19) to reflect membership and 

non-membership functions of IFS respectively. 

 

 

 

 

Where π  is the intuitionistic fuzzy index defining the hesitation of the expert in specifying MFs and 

NMFs. The antecedent parameters are the center ( c ) and standard deviation ( σ ) which are updated as 

in Eq. (20) and Eq. (21) respectively. 

     ik ik

ik

δE
w t 1 w t γ ,

δw
 (11) 

     ik ik

ik

δE
b t 1 b t γ .

δb
 (12) 



 
   

 


μ ν
Mk k k

μ μ ν νk 1
ik k ik k ik k ik

δy δy δy δy δy δyδE δE δE
.

δw δy δy δw δy δy δw δy δw
 (13) 

      
 

    
    

          
     

μ ν
a k k

iM M

k kk 1 k 1

f f
y t y t 1 β β x .

f f
 (14) 

μ ν
Mk k k

μ μ ν νk 1
ik k ik k ik k ik

δy δy δy δy δy δyδE δE δE
,

δb δy δy δb δy δy δb δy δb

 
   

 
  (15) 

      
 

    
    

          
     

μ ν
a k k

iM M

k kk 1 k 1

f f
y t y t 1 β β x .

f f
 (16) 

 
 

2

i ik

ik i 2

x c
μ x exp .

2σ

 
  

 
 

 (17) 

 
  

 
   
  
 

2

i ik

ik i 2

x c
μ x exp π,

2σ
 (18) 

 
  

 
   
  
 

2

i ik

ik i 2

x c
ν x 1 exp .

2σ
 (19) 
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 and 

 Where the derivative 
ik

δE

δc
in Eq. (20) is calculated as follows: 

 and the derivative in Eq.(21) is computed as follows: 

 

 

 

The parameters of the classical type-1 FS are also updated the same way using the generic GD 

backpropagation algorithm in Eq. (10). However, for classical FS, only the MF parameters are optimized. 

Shown in Algorithm 1 is the complete procedure for GD learning of the parameters of IFLS. The same 

procedure applies to classical type-1 FLS. The IFLS-GD was implemented in MATLAB® 2020. 

 

INPUT: training set, centre (c), standard deviation (σ), weight (w), bias (b), hesitation index (π), user    

defined parameter (β), learning rate (γ) 

(1) Set initial training epoch to 1 

(2) Set training data to 1 

(3) Propagate the training data through the IFLS model. 

(4) Using Eq. (11) and (12), tune the consequent parameters of IFLS. 

(5) Calculate the output of IFLS using Eq. (6) 

(6) Calculate the difference between the actual output and predicted output of IFLS with root mean   

      squared error (RMSE) as the cost function. 

(7) Backpropagate the error and tune the antecedent parameters using Eq. (20) and (21). 

(8) Increment the training data by 1. If training data ≤ total number of training samples, go to step 3  

      else increment training epoch by 1 

(9) If maximum epoch is reached END; else, 

(10) Go to step 3. 

OUTPUT: Prediction error 

   ik ik

ik

δE
c t 1 c t γ ,

δc
    (20) 

     ik ik

ik

δE
σ t 1 σ t γ .

δσ
 (21) 

μ ν
M k ik k ik

μ νk 1
ik k ik ik k ik ik

δy δf δμ δy δf δνδE δE
,

δc δy δf δμ δc δf δν δc

 
  

 
  (22) 

μ ν
M k ik k ik

μ νk 1
ik k ik ik k ik ik

δy δf δμ δy δf δνδE δE
.

δσ δy δf δμ δσ δf δν δσ

 
  

 
  (23) 

Algorithm 1: IFLS-GD Learning Procedure 
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3.4 | Dataset Description 

The Nigeria COVID-19 pandemic cases used in this study are extracted from Kaggle, a publicly available 

data repository [50] which houses COVID-19 data for all African countries. The dataset was captured 

from February 15th (as other African countries had confirmed cases from this day, however, the first 

case in Nigeria was reported on February 28th, 2020) to June 24th, 2020. The dataset contains 5 cases of 

COVID-19 outbreak in Nigeria namely: daily cases, daily deaths, active cases, total cases and total deaths. 

In this study, prediction is done for each COVID-19 case in Nigeria using present and past values to 

predict a one-step future value. According to [51], prediction can be qualitative, explanatory or time 

series in nature. In this study, each of the COVID-19 case dataset is modelled as time series which 

involves sequential collections of data over time [20]. The task here is a short-term forecast where a day-

ahead prediction is carried out. The time series is represented as: 

 

 

Where f  is a function representing the model of prediction and s  is the input size. For four inputs 

adopted in this study, the current input and three previous inputs of the time series are utilized giving 

the input generating vector as            x t ; x t 1 ; x t 2 ; x t 3 while  Y t 1  represents the output. 

Whilst the current value of the time series helps to keep an up-to-date 

measurement of COVID-19 case, the previous values keep track of the trend. Before the analysis, the 

collected COVID-19 cases data are normalized to a small range between 0 and 1 using the min-max 

normalization as follows: 

 

 

Where x  is the data instant of input variable, X ,  min X  and  max X  represent the minimum and 

maximum values of variable, X . To obtain the actual predicted (non-normalized) values, the normalized 

predicted outputs are converted back to the original scale using Eq. (26). 

 

 

Shown in Fig. 3 is the structure of IFLS with two inputs and three MFs and NMFs. 

 

Fig. 3. Architecture of IFLS [48]. 

The time series are split into 70% training and 30% testing instances respectively. For an objective 

evaluation of the cases, the experiments are conducted 10 times and the average results are computed. 

       Y t 1 f x t , x t 1 ,..., x t s 1 ,        (24) 

 

   






i

new

x min X
x .

max X min X
 (25) 

Xnew=IFLSpredictedOutput*(max(trainingData) - min(trainingData))+mi n(trainingData) . (26) 
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The epoch was kept at 100 and the learning rate chosen as 0.1. The normalized training data are then 

propagated into the IFLS as shown in Fig. 3. As shown in Fig. 3, the inputs are first passed forward into 

the fuzzifier to obtain the MF ( μ ) and NMF ( ν ) of IFLS, the rules are generated, and depending on the 

firing strength, the outputs are obtained. Table 1 is a snapshot of the different COVID-19 cases from the 

first day (28th February) of confirmed case in Nigeria up to March 31st, 2020. Fig. 4 shows the trend of the 

COVID-19 outbreak in Nigeria for the period of February 15th, 2020 to June 24th, 2020. 

Table 1. Snapshot of COVID-19 cases in Nigeria from 28th February to 31st March, 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: https://www.kaggle.com 

As shown in the figure, COVID-19 total and active cases in Nigeria started to escalate from April 18th, 

2020. 

Date Daily cases Daily Deaths Active Cases Total Cases Total Deaths 

Feb-28 1 0 1 1 0 
Feb-29 0 0 1 1 0 
Mar-01 0 0 1 1 0 
Mar-02 0 0 1 1 0 
Mar-03 0 0 1 1 0 
Mar-04 0 0 1 1 0 
Mar-05 0 0 1 1 0 
Mar-06 0 0 1 1 0 
Mar-07 0 0 1 1 0 
Mar-08 0 0 1 1 0 
Mar-09 1 0 2 2 0 
Mar-10 0 0 2 2 0 
Mar-11 0 0 2 2 0 
Mar-12 0 0 2 2 0 
Mar-13 0 0 2 2 0 
Mar-14 0 0 2 2 0 
Mar-15 0 0 1 2 0 
Mar-16 0 0 1 2 0 
Mar-17 1 0 2 3 0 
Mar-18 5 0 7 8 0 
Mar-19 4 0 11 12 0 
Mar-20 0 0 11 12 0 
Mar-21 10 0 21 22 0 
Mar-22 8 0 28 30 0 
Mar-23 10 1 37 40 1 
Mar-24 4 0 41 44 1 
Mar-25 7 0 48 51 1 
Mar-26 14 0 61 65 1 
Mar-27 5 0 66 70 1 
Mar-28 27 0 93 97 1 
Mar-29 14 0 107 111 1 
Mar-30 20 1 121 131 2 
Mar-31 4 0 125 135 2 

https://www.kaggle.com/
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Fig. 4. Chart showing the trend of COVID-19 cases in Nigeria from June 15th to 24th, 2020.  

 

4 | Performance Evaluation 

The metrics employed to evaluate the performance of the models are the root mean squared error 

(RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). 

 

 

 

 

 

 

Where ay  is the real output and y  is the predicted output of the different prediction models. 

Shown in Fig. 5 to Fig. 9 are the prediction performances of IFLS and FLS. As shown in most of the 

figures, the predicted outputs of IFLS tend to follow the actual outputs as closely as possible compared 

to the classical FLS. In particular, Fig. 7 shows the classical FLS performing poorly in the prediction of 

the active COVID-19 pandemic cases. This is an indication that the classical FLS may not be a very 

robust model that can provide more accurate estimates in the face of uncertainty in most cases. 

However, a closer look at Fig. 5 shows that the traditional FLS aligns closely with the actual values more 

than the IFLS. This is also revealed in Table 2 with FLS yielding lower absolute average prediction error 

than IFLS.  Shown in Fig. 10 is a single instance of the adaptation of the user defined parameter, β, of 

IFLS. 

 
2T a

t 1

1
RMSE y y .

T 
   (27) 

T a

t 1

1
MAE y y .

T 
   (28) 

a
T

at 1

y y1
MAPE * 100.

T y


   (29) 
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Fig. 5. Comparison of actual and predicted daily cases of COVID-19 in Nigeria using IFLS and FLS. 

 

 

Fig. 6. Actual and predicted daily deaths from COVID-19.  

 

 

Fig. 7. Actual and predicted active cases of COVID-19.  
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Fig. 8. Graph showing actual and predicted outputs of COVID-19 total cases. 

 

 

Fig. 9. Graph showing actual and predicted values of total deaths from COVID-19.  

Tables 2-8 show the comparison of the actual and predicted numbers of the different cases of COVID-

19 pandemic in Nigeria using classical FLS and IFLS with their corresponding absolute prediction errors. 

Interestingly, IFLS performs better overall as shown in the actual and predicted number of cases and 

the lower average absolute prediction errors (see Tables 3-6).  
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Table 2. Comparison of actual and predicted COVID-19 daily cases using IFLS and traditional type-1 

FLS. 

 

 

 

 

 

 

 

Table 3. Comparison of actual and predicted COVID-19 daily deaths using IFLS and traditional Type-1 

FLS. 

 

 

 

 

 

 

 

Table 4. Comparison of actual and predicted COVID-19 active cases using IFLS and traditional Type-1 

FLS. 

 

 

 

Day Actual case IFLS predicted 
case 

FLS predicted 
case 

IFLS predicted 
error 

FLS predicted 
error 

14-Jun 403 431.7257 425.6794 28.7257 22.6794 
15-Jun 573 493.8253 473.382 79.1747 99.618 
16-Jun 490 429.6738 453.1943 60.3262 36.8057 
17-Jun 587 477.6494 489.0567 109.3506 97.9433 
18-Jun 745 518.0091 536.6998 226.9909 208.3002 
19-Jun 667 580.5806 548.7646 86.4194 118.2354 
20-Jun 661 572.9636 546.8389 88.0364 114.1611 
21-Jun 436 488.4975 450.5051 52.4975 14.5051 
22-Jun 675 537.1518 538.3174 137.8482 136.6826 
23-Jun 452 468.4112 462.9581 16.4112 10.9581 
 Average error   88.57808 85.98889 

Day Actual case IFLS 
predicted case 

FLS predicted 
case 

IFLS 
predicted 
error 

FLS predicted 
error 

14-Jun 13 11.0428 7.78 1.9572 5.22 
15-Jun 4 7.4865 9.2303 3.4865 5.2303 
16-Jun 31 16.2782 -0.9636 14.7218 31.9636 
17-Jun 14 11.9934 4.7803 2.0066 9.2197 
18-Jun 6 8.2303 0.9676 2.2303 5.0324 
19-Jun 12 10.5317 7.637 1.4683 4.363 
20-Jun 19 11.7382 4.243 7.2618 14.757 
21-Jun 12 7.814 6.0818 4.186 5.9182 
22-Jun 7 8.4769 5.9029 1.4769 1.0971 
23-Jun 8 9.1006 9.0768 1.1006 1.0768 
 Average error   3.9896 8.38781 

Day Actual case IFLS 
predicted case 

FLS predicted 
case 

IFLS 
predicted 
error 

FLS predicted 
error 

14-Jun 10445 9861.75 12792.46 583.25 2347.462 
15-Jun 10885 10212.75 12955.82 672.25 2070.819 
16-Jun 11070 10512.45 13049.24 557.55 1979.235 
17-Jun 11299 10872.9 13145.2 426.1 1846.199 
18-Jun 11698 11329.2 13256.55 368.8 1558.55 
19-Jun 12079 11738.25 13346.67 340.75 1267.674 
20-Jun 12584 12143.25 13425.99 440.75 841.9872 
21-Jun 12847 12410.55 13461.73 436.45 614.7342 
22-Jun 13285 12825 13492.13 460 207.131 
23-Jun 13500 13101.75 13500 398.25 0 
 Average error   468.415 1273.379 
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Table 5. Comparison of Actual and Predicted COVID-19 Total Cases using IFLS and Traditional Type-1 FLS. 

 

Table 6. Comparison of actual and predicted COVID-19 total deaths using IFLS and traditional Type-1 FLS. 

 

Fig. 10. A scenario showing the adaptation of the user defined parameter, β , of IFLS. 

For further comparison, an experiment is conducted to compare the performances of the FLS 

approaches with ANN, where ANN forms an integral part of these FLSs. The GD-backpropagation is 

used to learn the parameters of the ANN. However, the number of hidden neurons for the ANN is set 

to 5 as it provided the smallest errors. Every other computational set-up is the same as those for the 

FLSs. Shown in Table 7 are the errors for the different models and for the different cases of COVID- 

19 in Nigeria. As shown in the table, IFLS with MFs and NMFs together with the hesitation indices 

exhibits more acceptable performance in terms of RMSE, MAE and MAPE with reduced average 

absolute errors compared to traditional FLS with only MFs. The IFLS also outperforms the standalone 

Day Actual case IFLS 
predicted case 

FLS predicted 
case 

IFLS 
predicted 
error 

FLS predicted 
error 

14-Jun 16085 16785 16761 700 676 
15-Jun 16658 17339 17319 681 661 
16-Jun 17148 17894 17872 746 724 
17-Jun 17735 18395 18491 660 756 
18-Jun 18480 18807 19189 327 709 
19-Jun 19147 19231 19943 84 796 
20-Jun 19808 19641 20715 167 907 
21-Jun 20244 20009 21362 235 1118 
22-Jun 20919 20349 22009 570 1090 
23-Jun 21371 20671 22575 700 1204 
 Average error   487 864.1 

Day Actual case IFLS 
predicted case 

FLS predicted 
case 

IFLS 
predicted 
error 

FLS predicted 
error 

14-Jun 420 437.2488 405.9877 17.2488 14.0123 
15-Jun 424 446.2144 411.2714 22.2144 12.7286 
16-Jun 455 461.3492 421.4614 6.3492 33.5386 
17-Jun 469 476.0808 431.2186 7.0808 37.7814 
18-Jun 475 492.2251 440.7627 17.2251 34.2373 
19-Jun 487 501.7825 446.6526 14.7825 40.3474 
20-Jun 506 512.3679 453.2103 6.3679 52.7897 
21-Jun 518 525.1286 460.3934 7.1286 57.6066 
22-Jun 525 536.7947 466.5433 11.7947 58.4567 
23-Jun 533 545.0093 470.7669 12.0093 62.2331 
 Average error   12.22013 40.37317 
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ANN. The integration of ANN in the FLSs (IFLS and FLS), however, provided a synergistic 

capability for effective handling of uncertainty than the standalone ANN. In the overall, the FLSs 

provided better performances than the ANN. The plot of the variations in the RMSE of the different 

models for different COVID-19 cases are shown in Fig. 11. The lower the RMSE, the better the 

performance.  

Table 7. Performance of FLS, IFLS and ANN on cases of COVID-19 based on different performance 

metrics. 

 

 

 

 

 

 

 

 

 

Fig. 11. RMSE for each model and COVID-19 case. 

Analysis is also conducted to compare the average running times of the various models in the prediction 

of COVID-19 cases as depicted in Table 8.  

Table 8. Comparison of running time of FLS, IFLS and ANN. 

 

 

As shown in Table 8, classical fuzzy logic system exhibits the lowest computational time compared to IFLS 

and ANN. This implies that if running time is of essence, then traditional FLS may be a good choice in 

these problem cases.  

COVID-19 cases Metrics FLS ANN IFLS 

Daily cases RMSE 106.4437 233.5901 104.6956 

MAE 87.3931 193.9882 87.4217 

MAPE (%) 17.038 32.5901 16.1937 

Daily deaths RMSE 7.4546 7.8208 6.7965 
 

MAE 4.9938 5.338 4.4439 
 

MAPE (%) 41.4715 45.6242 43.1968 

Active cases RMSE 1718.404 2870.6 1530.1769 
 

MAE 1481.424 2614.1 1286.7551 
 

MAPE (%) 13.4793 21.051 11.3811 

Total cases RMSE 1598.213 2063.1 1505.5709 
 

MAE 1313.287 1811.5 1254.4038 
 

MAPE (%) 8.2875 9.8775 7.3991 

Total deaths RMSE 67.192 178.8472 57.4778 

  MAE 60.2266 173.0478 45.3706 

  MAPE (%) 13.5011 35.4769 10.4515 

Model Average running time (sec) 

FLS 4.38 

IFLS 10.33 

ANN 13.28 
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5 | Conclusion 

In this study, IFLS was applied to analyze the prediction capability using COVID-19 data in Nigeria, 

the second most affected country with COVID-19 in Africa. To aid comparison, classical type-1 FLS 

and traditional neural networks were also employed. As shown in the tables, IFLS with MFs and NMFs 

outperforms the two competing models (FLS and ANN) in four of the COVID-19 cases based on the 

error metrics with decreasing errors. The presence of NMFs and hesitation indices provides more design 

degrees of freedom and flexibility for IFLS to handle uncertainty and vagueness well. Moreover, IFLS 

is an adaptive system, allowing the system to cope with the changing nature of COVI-19 pandemic. 

Optimizing the parameters of the IFLS helps to enhance prediction and generalization capability of the 

model. IFLS can therefore stand as a robust model for the prediction of COVID-19 pandemic cases. 

IFLS however incurs more computational cost than the classical FLS and may not be applicable in 

situation where running time is paramount. Overall, the FLS models outperform the single neural 

network model both in terms of accuracy and running time. However, IFLS has MF and NMFs that are 

precise and may not handle uncertainty well in many situations. Hence, in the future, we intend to use 

higher order fuzzy logic systems such as classical type-2 FLS with fuzzy MFs and type-2 intuitionistic 

FLS with fuzzy MFs and NMFs for the analysis of the COVID-19 pandemic cases. These higher order 

FLSs are expected to efficiently handle uncertainties and minimize their effects on the predicted 

COVID-19 pandemic cases. A study will also be conducted to include other African countries mostly 

affected by the COVID-19 pandemic. 
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