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Abstract

In this papet, we define the term " n-fuzzy subgroup" and show that every fuzzy subgroup is a n-fuzzy subgroup. We
define some of the algebraic properties of the concept of n-fuzzy cosets. Furthermore, we initiate the study of the 7-
fuzzy normal subgroup and the quotient group with respect to the n-fuzzy normal subgroup and demonstrate some of
their various group theoretical properties.

Keywords: Fuzzy subgroup, 1-fuzzy subgroup, 1-fuzzy coset, -fuzzy normal subgroup.

1 | Introduction

@@ Fuzzy sets were first studied by Zadeh in [12], and since there has been an incredible attention in this
Licensee Journal

particular branch of mathematics because of its many applications in fields like engineering

of Fuzzy Extensionand | 34 computer science as well as the analysis of social and economic behaviour. Rosenfeld [8]

Applications. Thi . . .

ppucations. TS introduced the concept of fuzzy groups on fuzzy sets in and developed number of basic results for
article is an open access f I f h f b d . al b . . f h F
article distributed under uzzy groups. In fact, the fuzzy subgroups admit many algebraic properties of the groups. For more

the terms and conditions | details, we refer to [9], [10]. Anthony in [2] redefined the concept of fuzzy subgroup. Later, Das [4]
of the Creative Commons | modified Zadeh and Rosenfeld's work by defining the level subgroups of a given group. The concept

Attribution (CC BY) of fuzzy homomorphism between two groups was defined by Chakraborty and Kharte [3], they also
license examined how it affected fuzzy subgroups. Additionally, Ajmal [1] presented the concept of the
(http://creativecommons.

typical kernel of a group homomorphism in fuzzy subgroups. The most recent research on the use
orgllicenses/by/.0). of fuzzy sets in various algebraic structures may be found in [11], [13]-[16]. Gupta and Qi [5]
developed the notion of T operators on fuzzy sets. The theory of fuzzy operators plays a key role in
various disciplines, specifically in the field of engineering and artificial intelligence. This significant
application of fuzzy operators motivates us to familiarize the concept of a fuzzy set based on these

operators.

In this paper, a fuzzy set is defined in relation to a Np-operator. With the help of fuzzy subset, we

propose a new version of fuzzy subgroup called it -fuzzy subgroup and analyse its supplementary
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theory, derive analogues for several fundamental group theoretic results. Using the classical
homomorphism, we demonstrate that the homomorphic image (pre-image) of n-fuzzy subgroup is -
fuzzy subgroup. Furthermore, we introduce the concept of n—fuzzy cosets and fuzzy normal subgroup.
We also define isomorphism between the quotient group with respect to the normal subgroup G,1.
Since 1 —fuzzy subgroup is more abstract structure then the fuzzy subgroup and the results in this
version are more general than the existing results in the literature. Throughout in this paper, we will
refer to FS(G) and FNS(G) as the fuzzy subgroup and fuzzy normal subgroup of a group G, respectively.

2 | Preliminaries

We review some of these core concepts which are relevant to the rest of our discussion.
Definition 1 ([6]). Let E be a nonempty set. A mapping p: E — [0,1] is called a fuzzy subset of E.

Definition 2 ([6]). Let p and ¢ be fuzzy sets of a set E. Their intersection p N ¢ and union pU o are
fuzzy sets of E defined by

L. (pno)ay) =min{ p(ay),o(a;)} forall a, €E.
II. (pUo)(ay)= max[ p(al),a(al)] forall a,€E.

Definition 3 ([6]). Let p be a fuzzy set of a set E. For y € [0,1], the set p, = {alz a; € E,p(ay) = 7/} is
called level subset of p.

Definition 4 ([6]). Let p be a fuzzy subset of a group G. Then p is called a FS(G) if

L playay) = min{p(al),p(az)} forall a,a, € G.
IL p(al‘l) > p(ay) foralla, €G.

Lemma 1 ([6]). Let p : G — [0,1] be a FS(G), for all a; € G, we have

I. p(e) > p(ay) foralla, €G.
1L p(al‘l) = p(ay).

Theotem 1 ([4]). Let p be a fuzzy subset of group G then p is FS(G) if and only if the level subset p,,
for y € [0,1], p(e) > y, is subgroup of G, where e is an identity of G.

Definition 5 ([7]). A FS(G) p is called a FNS(G) if p(a,a,) = p(aay) forall a;,a, € G.

Definition 6 ([7]). Let p be a FS(G). For any a; € G, define a map p,, : G — [0,1] as follows:

L p,(Q= p(gal‘l) forall g € G.
1. pg, is called fuzzy coset of G determined by a; and p.

Definition 7 ([5]). A map T:[0,1] X [0,1] — [0,1] define by (ay, a, ) — min{ay, a,} is T—norm iff
forall ay, a,,a5,a, €[0,1]

L T(ay,ay) = T(ay, a),
1. T(ay, T(ay, as)) = T(T(ay, a3), a3),
L. T(a,1)=T(@A,ay) =1,
IV. Ifa; <aganda, < a, then T(ay, a,) < T(az, ay).
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3 | n-Fuzzy Subsets and Their Properties

Definition 8. Let Nt be an operator defined as Nt : [0,1] X [0,1] — [0,1] by
Nr(aj,ap) =min{l —a;,1-a,} foralla;, a, € [0,1].
Infect, Ny admits the properties below, for all a;, a,,a3,a, € [0,1 ]:
L. Nr(ay,a;) = Ny(ay, aq),
IL NT(alll) = NT(ll al) =0,
111 If&ll <az and Ay < dy, then NT(ﬂl,ﬂz) > NT(afS/ a4).

The operator N is non-associative.

Definition 9. Let p: X — [0,1] be fuzzy subset of X and n € [0,1], the fuzzy subset p" of X (w. r. t fuzzy
set p: X — [0,1]) denotes the n-fuzzy subset of X and is defined as follows:

pl(a;) = min {1 -p(ay),1-n } foralla; € X.

Example 1. Let A = {set of young people} define p fuzzy set on A as follows:

(1 if a; <25,
|40 —
palar) =4 15a1, if 25<a; <40,
|
L 0, if a; > 40.

Take n = 0.6, now for a; = 20, we have p”A(al) = 0. For a, =30, we have p"A(az) = 0.333 and for a3 =
45, we have p”A(a3) =04.

Remark 1: It is important to note that one can obtain the negation of classical fuzzy subset p(a;) by
choosing the value of n =0 in above definition whereas the case become crisp for the choice of n =1.
These algebraic facts lead to note that the case illustrates the n-fuzzy version with respect to any fuzzy
subset for the value of 17, when 1 € (0,1).

Definition 10. Let &G — G where G, G’ are groups and p and ¢ be 1-fuzzy subsets of G and G’
respectively. Then &(p) and £7%(0") are the image of 1-fuzzy subset p” and the inverse image of n-fuzzy
subset o7 respectively, defined as:

) -1 |
L &(pM)(ay) = {OS’uP p(ay) 1a; € £ (ay), 1];}(55(1‘1(2)2;:%&
. &Xo"(ay) = 0"(&(ay)) forall ag € G.

Example 2. Let &V, — R where V, = {1, a1, a,, a;a,} defined as follows:

&) =1, &ay) =2, &(ay) = -2 and &(aya,) = 4. Define fuzzy set p on V, given by p(1) =1, p(a;) = 0.8,
p(ay) = 0.4 and p(a;a,) = 0.5 define fuzzy set 0 on R as follows:

o(a)) =—

las|
Take = 0.3, s0 &(p"(ay)) = {0, 02, 0.7, 0.5} and &7 (0™(ay)) = {0, 0.5, 0.7}

Theorem 2.

I.  Let p and 0 be any two fuzzy subsets of a set E then (p Ng)" = pTN o’
II.  Let p and o be two fuzzy subsets of a set P and Q respectively and & : P — Q be a mapping, then



n

— &M = (&(p) -
- S = ()"

Proof: By Definition 9, we have

(pNo)(a;) = min {1 -(pNno)ay),1-7 }, where a; € E and 1 € [0,1].
= min {1 — min { pay), oa)},1-n ]}

= min { min {1 - p(ay), 1 -7}, min{l - o(ay),1 -1 }}
= min { p(a;) ,0™a)}= (p" N 6")(a;) forall a, € E.
Consequently, (p" N a™)(a,)=p" N o™,
L &(pM(ap) = sup { p(ay) : &(ay) = ay }
= sup {min {1 - p(a;),1 -7 |}
= min {sup {1 - p(ar), 1 -7 |}
= min {1 - &(p)(ay),1 -1}
= (&))" foralla, € Q.
Hence, &(p7) = (E(P))q-
II.  From Definition 9, we have
ENp")ay) = (péa) = min{l - p(&(@)), 1 -1} = min 1 - &p(a;), 11}
= () (@) forallay €P.
Hence, E™(p" = (£7(p)) -
4 | n-Fuzzy Subgroups

This section deals with the concept of n-FS(G) and 1-FNS(G). We prove that every FS(G) (FNS(G)) is

also n-FS(G) (FNS(G)) but converse need not to be true. The concept of n-fuzzy coset is defined and

discussed deeply. Moreover, applying the idea of 1 — FNS(G), we introduced the quotient group with

respect to FNS(G). This leads us to develop a natural homomorphism with respect to 7 — FNS(G) from

a group G to its quotient group. Additionally, we discover the homomorphic image and pre-image of 7 -

FS(G) (n—=FENS(G). We conclude this section by establishing an isomorphism between the quotient
G

roup — and =
g p pV] Gpn‘

Definition 11. Let G be a group and p: G — [0, 1] be a fuzzy subset G. Let 1 € [0,1], then p is called n-

FS(G) if p"is FS(G). In other words, p is n-FS(G) if p admits the following properties, for all a;, a, €
G:
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L p'ayay) > min { p'(ay), p(ay)}.

o) -

b Puzzy. Bt Appl Example 3. Let p be a fuzzy subset of the group G = V; = {1, 4y, a,, a,a,} defined as p(1) = 0.7 and p(a;) =
p(ay) = plaay) = 0.9.
69

Define n-fuzzy subset p of G for n = 0.8 as follows:
p(1) = 0.2 and p"(a;) = p"ay) = p"(a;a,) = 0.1.
Clearly, p" is n-FS(G).

Remark 2: Note that, p is §-FS(G) for any choice of 1 in each of the following case

I p(aa;) = n >min {p(ul), p(uz)}.
1L 12 playay) >min {p(ay), p(az)}.

UL p(aya,) >min {p(ay), plaz)} > 1.
IV.  Forn =0, we get the complement of classical fuzzy subgroup.

Proposition 1. Let p be n-FS(G). Then the following statements hold:

- pay) < p'e) forall ay; € G and e is identity element of G.
- pNayayt) = p'(e) gives p'(a;) = p"(ay) forall ay, a, € G.

Proof:

On algebraic aspects of )-fuzzy subgroups

I. Since p”(alal‘l) = p'l(e) and also p”(alal‘l) = min {p”(al), p”(al‘l)]
= min{ p(ay), p(a)} = p(ay).

This implies that p™(a;) < p'(e), for all a, € G.

1. Since we have p"(a;) = p"(a,a,'a,) > min {p’?(alaz’l),p”(az)}.

Then by our assumption we have p’(a;) > min {p"(e), p"(a,)} which implies that

p'(ar) 2 p'(az).
Similarly, p(ay) = p(aa; a;) > min {p" (aZal‘l), p"(a1)} then by our assumption, we have p(a,) > min

{p"(e), p(ay)} = p"(ay), which implies that p"(ay) = p"(ay).
Hence, p(a;) = p"(ay).

The next result leads to note that every FS(G) is n-FS(G).
Proposition 2. Every FS(G) is also 7 — FS(G).

Proof: Let p be a FS(G). Consider, p"(a;4,) = min {1 - playa,),1 -1 }, where n € [0,1] and ay,a, € G.

> min {1 - min { p(ay), p(ax)},1 -1}



= min{min {1 - p(ay), 1-n}, min{l - p(ay),1 -7 }}:min {p”(al), p”(az)}.
Thus, we have p'(a;a;) > min{ p'(ay), p”(tlz)}.

Moreover, p”(al‘l) = min {1 - p(al‘l),l -7 } = min {1 - pla;),1-7 ] = pay).
This implies that p is -FS(G).
Remark 3: The converse of the aforementioned proposition must not be true.

Example 4. Let G = S; = { (1),(12),(13),(23),123),(132)},

p((1)) =04,p(12) =p(@3) =p(23) =05,
And

p((123)) = p((132)) = 06.
Consider the n-fuzzy set for 1 = 0.55 as follows:

p1((1)) = 045, p7((12)) = p7((1 3)) = p"((2 3)) = 0.45,
And

p1((123)) = p"((132)) = 0.4.

Clearly, the fuzzy subset p is 1 - FS(G) .

Moteover, p is not FS(G) because all possible level subset pog=1{(1),(12),(13),(23)}, pos=
{(12),(13),(23)}and pog =1{ (123),(132)}.

Poas Pos and pog are not subgroups of S; = G.

Proposition 3. Let G be a group and p be its fuzzy subset such that p(a;) = p(al’l) forall a; € G.
Letn > m, where n € [0,1] and m = sup {p(al),al € G}, then p is also 7-FS(G).

Proof: Since, we have n > m. So, n > sup {p(al), a € G}, which implies n > p(a;) forall a; € G.
So, we have p(a;) = min {1 -pla),1-n } =1-n foralla, € G.

This implies that p"(a;4,) > min [p"(al), p”(az)] forall aj,a, € G.

Also, p"(a;7) = p(ay).

Hence, p is 1-FS(G).

Proposition 4. Let p and ¢ be any two 7-FS(G). Then p N o is also n-FS(G).

Proof: Let p and o be two -FS(G) of a group G and let a1,4, € G.
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Since, (p N0)"(a;) = (p" N 6")(a;) hold, then we have
,”’- (p No)l(ajay) = (p"NoM(ajay).

So, (p" N 0")(a1a,) = min { p(aya;) ,0"(a,a,)}

I Fuzzy. Ext. Appl

71 > min{min { p'(a;), p'(a,)}, min| 0"(ay), 0"(az) }
= min{min{ p'(a;), 0"(a;)}, min{ p'(ay), o"(a;) }}
= min {(p" N a™)(a), (p" N 0")(a,)}.
This implies that (p" N 0)(ab) > min {(p" N 0™)(a), (p" N 6")(ay)}.

Moreover, (p N o)”(al‘l) =(p"N o”)(al‘l) = min {p"(a,),

p'(a; ™)} = min {p"(ay), p'(ay)}-

We have (p N a)”(al‘l) =(p No)lay).

Consequently, p N o is -FS(G).

Corollary 1. The intersection of any finite number of 7-FS(G) is also -FS(G).
Proposition 5. Let p and 0 be any two -FS(G). Then p U ¢ need not to be n-FS(G).

Example 5. Let G = Qg = {+1, +i, +, £k }. Take two subgroups of G that are

On algebraic aspects of )-fuzzy subgroups

H; = {41, i} and H, = { £1, £j}.

Let p and o be two fuzzy subsets of G as:

(a ) _ {02, lf ap € Hl,
plar) = 0.9, otherwise.

And

_ 0.3, if a € HZ,
ofar) = {1, otherwise.

Since, p"(a)= min {1 —-pa),1-n }

Define n-fuzzy subsets p and ¢” for = 0, as follows:

0 _ 0.8, if a € Hl/
p-(ar) = {0.1, otherwise.

And
0 _ 0.7, if a; € Hz,
o(ay) = {0, otherwise.
It is easy to check that p® and ¢° are 0-FS(G).
Now, we define p° U ¢? as:

(p° U 6°)(a,) = max{ p°(ay),0°(ay)},

So, we have



0.8, lf a, € Hll
(P° V) (ay) = {07/ if a1 € Hy\Hj,
0.1, otherwise.

Leta; =iand a, =7,

Observe that (p° U a?)(i) = 0.8 and (p° U a?)(j) = 0.7.

So, min {(p° U a®)(i), (p° U a)(j)} = 0.7, but (p° U a°)(ij) = (p° U o®)(k) = 0.1.

This implies that
(p° Ua®)i) < min {(p° U?)(i), (00 Ua")())-

Hence, p® U ¢ is not 0-FS(G).

Example 6. Let G = Qg = {+1, +i, +, £k }. Take a subgroup of G thatis Hy = { 1, +i}.

Let p and o be two fuzzy subsets of G as:

(a ) _ {03, if a; € Hl/
play) = 0.9, otherwise.

And

_ 0.2, if a € Hl/
ofaq) = {1, otherwise.

Then we have po and ¢? as follows:
0 _ 0.7, if a; € Hl/
p(ar) = {0.1, otherwise.

And
0.8 ifa; e H
0 — ’ 1 1,
o(ay) = {O, otherwise.

Then we have

08,  ifameH
0 0 = ! ! o
(p” V) ay) = {0.1, otherwise.

It can be easily seen that p° U ¢? is 0 — FS(G).

Definition 12. Let p be n-FS(G), for any a; € G define n-fuzzy left coset a;p" of p in G as follows:

a;p"(x) = min [1 - p(al‘lx),l -1 }for all a;,x € G.
Similarly, we define n-fuzzy right coset pa; of p in G as follows:

pa;(x) = min {1 - p(xa{l),l -n }for all a;,x € G.

Example 7. Let p be a fuzzy subset of the group G = Z, = {0,1,2, 3} defined as

p(0) =0.2, p(2) = 0.4 and p(1) = p(3) = 0.4.
Define n-fuzzy subset p" of G for n = 0.5 as follows:

p"(0) = 0.5, p"(2) = 0.5 and p"(1) = p'(3) = 0.4.
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Clearly, p" is n-FS(G). Consider n-fuzzy left coset of p by the element 2 € Z, as follows:

] 04, ifa, € O/2 s
2 + p'(a;) = min {1 —p@2+a)1-1 ] - {0,5, / ;theiwisi.

Similatly, define n-fuzzy right coset of G.

Proposition 6. Let p be n- FS(G). Then p be n — ENS(G) if and only if a;p"(x) = p"ay(x) forall a; € G.
Note: a;p"(x) = p’i(ul‘lx) and p'la; (x) = p”(xal‘l) forall x € G.

The following result leads to note that every FNS(G) is - FNS(G).

Example 8. In view of Example 7 n- FS(G) is a -FNS(G), because its all n-fuzzy left cosets and n-fuzzy

right cosets are equal. For instance, consider

04, ifa; €10,2},

2+pMag) =pl(a))+2= {0.5, otherwise.

Proposition 7. Every FNS(G) is also n-FNS(G).

Proof: Suppose that p is FNS(G) which implies that a,p = pa;.

Then for any x € G we have p(al‘lx) = p(xal‘l). So, we have

min [1 - p(al‘lx),l -7 } = min {1 - p(xal‘l),l -7 ]

This implies that a,p"(x) = p"ay(x) for all x € G. Consequently, p is 7-FNS(G).
Note that the converse of above tesult need not to be true.

Example 9. et G=D;=<a,b: a®> =1 =e, ba=ab >.

Define a fuzzy subset p of G as follows:

(a) = {0.3, ifae<b>,
Pla) =101 otherwise.

Take 1 = 0.6 then we have p"(a) =1-1n forallaeG.
amp"(g) = min {1 - p(ay7'g),1-1 )= 1-7

= min {1 - p(gal’l),l -7 } = p'ay(g).

Then a,p"(g) = p"a;(g) which implies that p is -FNS(G). But it can be seen that p is not FNS(G). This is
because p((a?)(ab)) = 0.3 and p((ab)(@?)) = 0.1. i.e. p(a~'g) = p(ga™!) not hold.

Proposition 8. Let p be 1-FINS(G). Then p"(b‘lalb) = pay) ot p"(a1a;) = p™(aya,) hold, for all a;,a, € G.
Proof: Since, we have p be 7 — FNS(G) then we have a,p" = pa; for all a, € G.

This implies that alp”(az‘l) = p’7a1(a2‘1) forall a,™! € G.

= min {1 - p(al‘laz‘l),l -7 ] = min {1 - p(a[lal‘l),l -1 } = p”(al‘laz‘l) = p”(az‘lal‘l).



Consequently, we have p”((azal)‘l) = p’i((alaz)‘l).

Hence, p™(aya,) = p'(a,ay).

Theorem 3. Let p be 7-FS(G). Then following statements are equivalent:

L.
IL.

III.
Iv.

Proposition 9. Let p be n-FS(G). Let > m, where 1 € [0,1] and m = sup {p(al),al € G}, then p is also

payay) = playap) forall ay,ay € G.
p”(alazal‘l) = pUay) forall aj,a, € G.
p”(alazal‘l) > p'(ay) forall aj,a, € G.

p”(alazal‘l) < p'ay) forall aj,a, € G.

1-ENS(G).

Proof: Since, we have > m, so n > sup {p(al),al € G}, which implies that n > p(ay) for all a, € G.

So, we have p"(a;) = min [1 -p(a),1-n } =1-n,

play(g) > min{l - p(gal‘l),l -1 } =1-n

Similarly, a;p"(g) > min[l - p(al‘lg),l -1 } =1-1.

This implies that a;p" = p"a; forall a; € G.

Hence, p is also n-FNS(G).

The following result illustrate that the set Gpn is infect a normal subgroup of G.

Proposition 10. Let p be n-FNS(G). Then the set define as Gn = { a, € G: p'(ay) = p'l(e) } 4G.

Proof: Since, G, is nonempty because e € G. Let ay, a, € G,

p”(alaz‘l) > min[ pay), p”(az‘l)] forallaj,a, € G

= min{ p(ay), p’?(az)} forall a;,a, € G

= min[ p'(e), p”(e)} forall aj,a, € G

= p’l(e)'

This implies that p"(a;a,71) > p(e).

Since, p' is FS(G) which implies that p"(a;2,7) < p'(e).

Hence, p"(alaz’l) = p'(e) implies that G, is subgroup of G.

Now we prove it is normal subgroup of G. Let a; € Gn and 4, € G, then we have

P"(ﬂzflﬂlﬂz) = p(ay) = p'l(e).

{17
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This implies that a,™ a4, € G .
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Consequently, we have G,n 2 G.
Proposition 11. Let p be 1-FNS(G) of a group G. Then the following statements hold

L a;p"=ap" & a;7'ay € G,

Il play =pla, & aya,™" € G,
Proof:
1. Suppose that a;p" = a,p", then we have
p”(al‘laz) = min {1 - p(ul‘luz),l -1 }

= 11p"(a2)= a,p"(a,)

min {1 - p(az‘laz),l -7 }

min {1 -ple),1-n ]

p(e).

Thus p’?(al‘laz) = p'l(e) implies that a;~'a, € Gn.

On algebraic aspects of )-fuzzy subgroups

Conversely,
a,p"(a3) = min {1 - p(al‘lag),l - }
So, p”(a1’1a3) = p”(al’laz. az’lag) > min{p”(a{laz), p’?(az’la_o,) }
=min {p"(e), p(a, 1) |
= P"(ﬂzflﬂs):ﬂzpn(ﬂs)-
By interchanging the a; and a,, we have a;p™(a3) = a,p"(a;) for all a3 € G.
Hence, a1p" = ap".
I Similar as above proof.

Proposition 12. Let p be 7-FNS(G) of a group G and ay,4,,x,y € G. If a;p" = xp" and a,p" = yp" then

ayap" = xyp'.

Proof: Given that a;p = xp" and a,p" = yp", which implies that a,7'x, a,7'y € Gn.
Now (a185)'xy = az‘l(al‘lx)yz az_l(ﬂl_lx)(azaz_l)y
= [az‘l(al‘lx)az ](az‘ly) €Gy GG

This implies that (a14,)'xy € Gyn. Hence, a1a,p" = xyp!.



Proposition 13. Let p% be the collection of all n-fuzzy cosets of a n — FS(G). This form a group under

the binary operation ® define on the set p% as follows: ”’-

1 Fuzzy. Exi. Appl

pla; ® plla, = p'aja, forall ay,a, € G.
76
Proof: As we know that % = [ pla, :a; €G }
Let pay = p'ay and p"a, = p'la,’ forall ay,a,’,a,,a,” € G.
Let g € G then (p'a; ® play)(g) = paya(g) = min {1 - p(g((@12,)"),1 -7 |
= min {1 - P((Sﬂz_l)ﬂl_l)zl -1 ]
= Pr"h(gaz_l) = Pn‘h'(g“z_l)
= min {1 - p((g2,)a, ), 1- 7|

= min {1 - p((a’_lg)b‘l),l -1 }

= pnuz({lll_lg) = Pnazl(al/_lg)

[l
2.
=]

[l
2.
=]

= min {1 -p ((az'_lal’fl)) -1 }

= min {1 - ,O((lh'az/)_lg))'l -n }

=
A
N
Ny
3
—
—
|
=
_
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= min {1 - p(g(a{ﬂz’)fl))rl -1 }
= play’ay’.

. . G
Hence, ® is well define operation on the set o

G - . , - G . o
The set i under this binary operation admits the associative law. The element p'e of on is the identity

element and the inverse of an element p'a; is p'a; L.

Example 10. In view of Example 7 consider p as n- FNS(G).

The set% ={p",2+ p"} forms a group under the following binary operation defined on % as (a; + p) +

(ay + p") = ((a1 + ap) + p").

Note that p'(a;) is identity element of this group and inverse of a; + p” is (—a;) + p'.

Definition 13. The group p—Gn of n-fuzzy cosets of a 7 — FNS(G) is called the quotient group of G by p'.
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Theorem 14. Let G be a group and p—Gn be quotient group with respect to 1 — FNS(G). There exist a natural

epimorphism from G to % which is defined as &(a;) = p'a; with Ker & = G-
Proof: Let a, a; € G be any elements. Then &(aya,) = plaja, = play play = E(aq)é(ay).
Therefore, & is homomorphism. For each pa; € G,n we have a; € G such that &(a;) = p'la;.

This implies that £ is onto homomorphism.
Now Ker £ ={a, € G: &(ay) = ple)
={a,€G: pla; = ple}
={a;€G: me' Gy}
:[aleG: ﬂler’i}Z Gyn.
5 | Homomorphism of n-Fuzzy Subgroups
Anthony and Sherwood [2] observed that using a minimum in the Rosenfeld [8] definition of a fuzzy
subgroup constrains the concept, rendering it useless in a variety of fuzzy situations. They introduced the
concept of an T-norm and redefined the fuzzy subgroup by substituting a T-norm for a minimum. They
investigated the impact of a simple homomorphism on fuzzy subgroups. Here, we present the results of

homomorphism in frame work of our proposed definition.

Theorem 4. Let £: G — G’ be a bijective homomorphism of a group G into a group G'. If p is -
FS(G) then the homomorphic image &(p) is -FS(G').

Proof: Given that p be n-FS(G’). Let a’y,a’, € G’ be any element then we have unique elements a,,a; € G,
such that ¢(a,) = 4’y and p(a,) = a’,.

Further, (£(p))"(@1'5)
= min {1 - &(p)(@1), 1- 1
= min {1 - &(p)(E@)E@), 1-1 )
= min {1 - &(p)(&(a1a)), 1-1
= min {1 - &(p)(@ay), 1 -1
= pNayay)
> min {p'l(a,), p'(ay) | for all ay,a, € G
= min {£(p)E(a), &(p)'E(@,) |
= min [£(p)(a’ ), £(p)(a’5) }

Consequently,



(EP)@1a'y) = min(E)@ ), (&)@, )

{17

Also, (&(p))"@™) = (@ ™) = &(p") (@(ﬂ‘l)) = p'(a!) =p"@ ) e b
= & (E@) = (&) @) 78
Thus, (£(0)"@ ™) = (&) @).

Consequently, &(p) is n-FS(G').

Theorem 5. Let £: G — G’ be a bijective homomorphism of a group G into G'. If p is n-ENS(G)
then the homomorphic image &(p) is -FNS(G’).

Proof: Given that p be n- FNS(G). Let a’y, a’, € G’ be any element then we have unique elements a,,a, €
G, such that &(a;) = a’; and &(ay) = a’5.

(&) (@1a%y) = min {1 - &(p)ara’y), 1-1}
= min {1 - &(p)(&(@)éay), 1-1 )

= min {1 - &(p)(&(a1a,)), 1-17 )

= min {1 - &(p)(E(apnr)), 1-1 )

= min {1 - &(p)(E@)E(), 1-1 )

= min {1-&(p)(a'a’)), 1-7}

= (&(p) @)

Asghar and Ahmad |J. Fuzzy. Ext. Appl. 4(2) (2023) 65-80

Consequently, &(p) is n — FNS(G').

Theorem 6. Let £ : G — G’ be 2 homomorphism of a group G into G'. If ¢ is n— FS(G’) then the
pre-image £71(0) is n-FS(G).

Proof: Given that 0 be -FS(G’). Let ay,a, € G be any element then we have
(&) may) = ENoN(@ar) = 0(&(a1a,)) = 0(E(a1)E(ay))

> min {0"(&(ay)), 0"(&(az)) }

= min {&7 (0")(ay), ENoM)(ay) .

Thus,

(£74(0))(a18,) = min {(&71 0))(ay), (E20)N)(ay) |-

Also (£7(0)(a™!) = (0" (a™!) = o (é(a-l)) = 0"(&@) = £ ).
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Thus, (£7(0))"(a™!) = (£71(0))(a).
Hence, £1(0) is n-FS(G).

Theorem 7. Let £ : G — G’ be a homomorphism of a group G into G'. If ¢ is -FNS(G’) then the pre-
image &71(0) is -FNS(G).

Proof: Let 0 be n — FNS(G’). Let ay, a, € G be any element then we have
ENoNNaya) = oM (may) = 0"(E(a1a)) = 0"(E(@1)E(ay)) = 07(E(azay))

= (E7M0)Nagay).

Thus

b

(EH ) a1a) = (E71(0)) N apa).
Hence ¢71(0) is n- FNS(G).
Theorem 8. Let p be a n-FNS(G) and 4y, 4, € G be any element. If a;p" = a,p" then p(a;) = p"(ay).

Proof: Suppose that a;p = a,p” then by Proposition § we have a;7'a, € Gyn and a,la, € Gn. Since, 1-
FNS(G), this implies that

p(ay) = p?(a, ;) > min {p7(a,7ay), p'(ay) | = min{ p'(e), p'(ay)} = pi(ay).
Therefore, we have p'(a;) > p"(a,). Similatly, we have p'(a;) < p"(a,).
Hence, p'(a;) = p"(ay).

Theorem 9. Let p be a n-FNS(G). Then — =

G G
n °
p Gyn

Proof: Define a map ¢ : % — qu by the rule
p

&(arp") = ;G , for all ay € G. In view of Proposition 8 & is well define.

The application of Proposition 8 leads to note that & is injective. £ is obviously sutjective.

Now consider, for a;p”,ap" e% we have é((alp’?)(azp’?)) = @ayap") = a10,Gpn = 01,Gpn a;Gyn =

E(apME(aypn).

So, £ is homomorphism. Since £ is a bijective mapping, which implies this is an isomorphism. Hence, i =

G

qu‘
6 | Conclusion

In this paper, we introduced the idea of n—FS(G) and n-fuzzy cosets for a given group. We used the
concept of 7-FNS(G) and discussed various related results and properties. We also studied the effect on
the image and inverse image of 1 — FS(G) (FNS(G)) under group homomorphism. We shall extend this



concept to intuitionistic fuzzy sets in the upcoming studies and look into itsnumerous algebraic features.

Moreover, we used the concept of n —fuzzy subset in classical field theory.
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An effective and flexible method for encoding ambiguous data is using cubic sets. The concept of incline algebraic sub-
structure is considered and is interlinked with the notation of the cubic set to define cubic subincline. The sense of cubic
sub incline of algebra is established with relevant results. Additionally, the results such as homomorphic image, preimage,
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1 | Introduction

@@ Zadeh [16] worked on a new set called as fuzzy set where the concept of uncertainty in many real
Licensee Journal

applications are analyzed and this fuzzy set plays a vital role in the recent research. And the concept

f Fuzzy E ion a . . . . . .
© l:"y Xtel;]lon 41 of interval valued fuzzy set were brought out that is membership function in terms of a collection of
Applications. This

o closed sub-interval of [0, 1]. Later, Atanassov [18] extended the fuzzy set into an intuitionistic fuzzy
article is an open access

article distributed under | S€t by adding non membership for every element. Further, Jun et al. [4] explored a notation in which
the terms and conditions | the first term is of interval valued fuzzy and the second term as fuzzy and is named as a cubic set.
of the Creative Commons | Many research is moving a long way with these types of sets and from those work this paper is

Attribution (CC BY) motivated to work on this topic [1], [2], [8]-[15].
license

(http://creativecommons.

All the structure of incline algebra is introduced by Coa et al. [3] which is a generalization of both
org/licenses/by/4.0).

Boolean and Fuzzy algebras, which is associative, commutative under addition and multiplication is
distributive over addition with xy + Xy = X, Xo + Xg Yo = X0, Yo + X0 Yo = Yo for all xy,y,. It has both
a semiring structure and a poset structure and this incline algebra deals with different fields such as
the graph theory, decision making, matrices etc.

Many algebraic structures are fused with fuzzy set was started by Rosenfeld [17]. Further many

algebras like BF, BCK, BCI and B are successfully correlated with various kinds of fuzzy sets and the
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incline algebra was merged with fuzzy and its generalization by Jun et al. [5]-[7]. Here, this paper is also
merging the concept of incline algebra with cubic set and introduces the notion of cubic subincline. ”’-

Moreover, it deals about the cattesian product, homomorphic image and some related results of the

structure introduced. J. Fuzzy, BX. AP

This work is characterized as the following sections: Section 1 introduces about the work. Section 2 82
defines the needed definition of this paper and Section 3 deals with the definition of cubic subincline
and at last Section 4 concludes the work.

2 | Preliminaries

This part provides some essential definitions on incline and fuzzy sets.

Definition 1. A non-empty set (7, +,#) is an incline algebra if for all xq , 1,2y € 7 the following hold:

-+ is commutative and associative.

— * is associative and distributive (both left and right) under +.
- Xo+ Xp = Xp.

- X+ (X *yo) = X

— Yo+ (o *¥o) = Yo

Definition 2. A subincline of an incline 7is a non-empty subset M of T which is closed under addition
and multiplication.

Definition 3. A fuzzy set in a universal set x is defined as y : x — [0,1].

Definition 4. An interval valued fuzzy set on x is defined by C = {xy ,¥c(xg)} forallxy € x where
yc - x — DI[0,1]; D[0,1] denotes the family of all closed subintervals of [0, 1]. Here
Ve (x0) =[yE(xo) ,y&(xo) 1 forall xy € x with y= <y¥ and yt ,pd are fuzzy sets.

Definition 5. Let x be a non-empty set and a cubic fuzzy set in x is of the form
C=1{xy,7Vcxg), velxo)} forall xy € x where Vc:x — D[0,1] andve @ x — [0,1], whete V¢ (xp) is
an interval valued fuzzy set and v¢ (xg) is a fuzzy set.

Manokaran et al. |]J. Fuzzy. Ext. Appl. 4(2) (2023) 81-91

Definition 6. A non-empty set C in an incline is called a fuzzy subincline if

A (C(xo + o), C(xg * Yo )) > A ( C(xp), C(yo )) forall xo,yy €.
Here the notation for min is represented as A , rmin is represented as A and max as V.
3 | Cubic Subincline of Incline Algebra

This section deals the structure of cubic subincline and some related results.

Definition 7. Let 77 be an incline algebra and a cubic set C in 71is said to be a cubic subincline of incline
algebra if it satisfies:

- A ()7(x0 + Yo ), V(X0 * Yo )) zA ( 7(x0), 7(yo )),
- vV (g + Yo ) v(Xo*Yo ) <V (V(xo), V(Yo ) forallxy,yy €7.

Theorem 1. Let C; and C, be two cubic subinclines of 7, then sois C; N C,.

Proof: Let C; and C, be two cubic subinclines of 7, for all x4,y € 7.



Since Y (¢, ) & ¥(c,) are interval valued fuzzy sets on C; and C,
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K (R (Vicinc) Go+Y0 ), Vicincy) (o * Yo )
= AR Py X0+ Y0 ) Vicy) Ko + Yo A Picy ) (X0 * Y0), Vicy) (Ko * Yo )

=AAR @)oo+ Yo0 ) Vi) Go*Yo)) » A (Vicyy o+ Yo ) Vicy) Xo*Yo)))

> X (x (Zicr) (0 ) Picy) Wo) )& ( Picy) (0 ), Ficy) o) ))

N (X ()7(c1) (x%0), V(cy) (xo)) ;A (77(C1) o) +7(c,)Wo) ))
=X (Yicincy) (o) Viciney) Wo))

A (R (Ycyney) o+ Y0 ) Pciney) X0*Y0)) = X (Vicyncyy Ko ) Picyncy) Mo))-

Similarly, v(c, y and vc,) are fuzzy sets on Cy and C,.
v (Y (vein ey Ko+ Yo ) Vicincy) (o * Yo )
=v (v (v(c1 ) (X0 + Yo ),v(c2 )(xo + yo)) Y (U(c1 y (X0 * Y0), vicyy (X0 * Yo )))

=V (V (v X + Y0 ) vy (o*Yo ), Y (Vi) (Ko + Yo ) Ve, (X0 * Yo )

<V (V (V) (o) vy W) )Y (viey) (o) vicy) (o) ))

<V (V (vicy) (0) ey () /Y (Vi) Wo) ey Wo) ))

A cubic set discussed in incline algebraic sub—structure

=V (Vcyncy) (0 ) viciney) Wo )
A (V ( VcinCy) (X0 + Yo ), VcinCy) (X0 * Yo ))) <V ( V(cinCy) (x0), V(cinCy) (yo))-

Thus C; N C, is a cubic subincline of 7 .

Theorem 2. Let the cubic set & = {y, vz} be a cubic subincline of 7 & ¥ is an interval valued fuzzy

and v are anti fuzzy subincline of 7.

Proof: Let the cubic sct @ = { 7, v} be a cubic subincline of T and take x5, yo € .
Then to prove X (7 (%o + %o), Ve (¥ * ¥0)) = & (7 (x0), P (vo)):
(?7%7(360 + yo)) = [ Ve (xo + yo) , i (xo + yo)]
2 [ A [V%(xo)/ V%(yo)]/ A [V% (xo)ryg/(l/o)]]
= [ ADE(x) Y2 o)l A [E (o) Y2 (o) ]

> X ()77 (x0), 7z (]/0))



R (72 (0 +0)) 2 X (7 (x0), 72 (o))
Similarly, X ( Ve (xg* yo)) 2 A (7%)(950)/)7%(%))
X (72 (xo + o), T (60 * o)) 2K ( R (72 (x0), 72 (o)), X (7 (o), myo)))

A (7%)(950 +Yo), Ve (x0 * yo)) 2 A ()7%(%)/ 7%)(%))-

To prove vy is an anti-fuzzy subincline.
(e G + 00, v (oo 0)) = v (1= 0o + ), (= 01y *30))
=V ((1 — (v (xo + Yo), vz (xo *yo)))

=1-v (( v (X + Yo), v (xg *yo)))

v

1-v (( v (xp), U{g/’(yo)))
> v ((1 - v (%), 1 - U’%’(yo)))

= (ve (x0), v (v0))-

Therefore, vy is an anti-fuzzy subincline of 7.

Conversely, Y is aninterval valued fuzzy subincline of 7 and vg is an anti-fuzzy subincline of 7.

To prove (Vz, vz) 1s a cubic subincline of .
Therefore, the proof is obvious by the definition of a cubic subincline.

& = (Yz ,vg) is a cubic subincline of 7.

Definition 8. Let %) and &, be two cubic fuzzy sets of 7 and 3 respectively. The direct product of
% x %:Tx3I5[0]1] of & and Zyis defined by Vg o0, Y0)= X (2 (%0), P,(v0)) and

Ve x 7 (X0, Yo) = Y (v (xo), U%Z(]/o))-

Lemma 1. Let (7,+,+) and (3,+,#) be two incline algebra, for all (xq,y),(x,,y,) € T x 3, define
(e y1) + (0, 12) = (0 +22), (1 + y2) 5 (g, 1) * (X, y2) = (X1 #%2), (y1 * y2)- Then (7T X 3, +,%)

also an incline algebra.

Theorem 3. Let &) & &, be two cubic subincline of 7 and 3 respectively, then &; X %, is a cubic

subincline of 7 x 3.

Proof: Let Yz, , V¢, be two interval valued fuzzy cubic subincline of T and 3 respectively.

Now, & (77%1 x#z (1, Y1)+ (0, ¥2) , Ve oz, (X1, 41) * (xzr]/z))

=A (%1 x% (X1 +2), (1 +Y2) Ve xe (41 *Xx2), (1 *yz))

{17
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[ =7 (7t + 02, Te, (a4 1)) L (e a2, T 3

J. Fuzzy. Exi. Appl =A (/_\ (’)7?//))1 (xl + xZ)/ )7?5)1 (xl * xZ) ) /X (7%)2 (yl + yZ) s 7%)2 (yl *yZ)))
85 > X (X (7,0, 7o () ) K (P, 1), Ve, )

= A (7\ (7%1(x1)r7%2 (1) ) s R (Ve () L Ve, (yz)))
=R (Ve xz X1, 11) » Yoy x 2y (X2, 12))

A (77%1 w7 1 y) + (2, Y2) Ve x 7 (1, Y1) * (xz,yz)) >R (Ve xz (1, 01) 0 Vo xz (X2, 42))-

Let vg; and vy, be fuzzy subincline of Tand 2 respectively.
\4 (Us;ﬁ w7 X y1) + (0, 12) Uz <z, (X1, 01) * (X, y2)>
=V ( Ve xzy (X1 +X), (1 +Y2) V7 iz, (01 % X0), (1 *]/2))
=V ((v%‘l(xl +X), Vi, (1 +Y2) ) (Vg (%1 X3), vz, (11 *yz)))
=V (R (0% 01 +32), 05,11 # 32) ) Y (g, 1 +2) 0, (11 12)))
<v (v (Ug’l(xl), Uiz (22) ) ;Y (vg, (1), ve, (]/2)))

=V (V (v (), v, ) ) 0 Y (0(12) S0, (1))

A cubic set discussed in incline algebraic sub—structure

=V ( Ug)l X &) (xllyl) ’ Ufgl X &) (x21y2))
v (U%fl w7, X1, Y1) + (X2, ¥2) , Vg x 7, (X1, 1) * (xz,yz)) SV (vg xz (X1, 1) . Ve xz, (02, 12))-
Thus, & X &, is also a cubic subincline of 7 X 2.

Definition 9. A mapping f : 7— IJ. Let & is a cubic subincline of 7 then the image of a cubic subincline
of dis defined as f(%)= (yf,v5) where Yr(yo) =X { Yz (x0)/ f(x0) =yob, vf(vo) =V {vz(xp)/
f(x0) = yol-

Theorem 4. Let f : T — I be amapping and & ={ Yz, v} is an cubic subincline of 7, then f(%) is
also an cubic subincline of 3 where f(%) = (V5 , vy) satisties )7f(y0) =N {Ve(xy) f(x) =yo} and

ve(vo) =V {vz(x0)/ fx0) = Yol

Proof: Given f : 7 — I be amapping and x1,x, € Jsuch that f(x;) =y, f(x) =y, forall y;,y, € 3.
Since # is a cubic subincline of 7, X (P(x; +xp), 7(x1 * 53)) > X (¥(x1), 7(x,))-

A=K (Vz(x0) f(xg) =y1 + Yo} where xy = x1 +xp,

Vi + v2) =X A 7e(x1+x2) fx1 +23) =1+ vl

Vi1 + v2) =X A 7e(x1+x2) f(x1) + f(x2) =y1 + Wb,



Vi y2) =X {V2(x0)/ f(x0) =y1* Yo} wherexg = x; %X,
Vi * y2) = X A7 (x 2 x) flx1#25) = y1* o,
Vi) = X A Ve (xy#x0) f(x1) * f(x2) =y1* yal,
KT+ ¥2), 7en* ¥2) 2K (X V(2 +22) fa) + f(x2) =y1+ val,
KA Ve (xyxxp)) fx1) = f(x2) =y1* yal)
=R (KA 7e(x+2), 72 (x1 2 x0 )/ f(x1) + f(x2) = Y1 + Yo, f(x1) * f(2) = Y1 # Y2))

=R (KA P2(x1), V2 () flx1) + f(x2) =1+ va, f(x1) *f(x2) =v1* yo})

>

( A AP (x1), 7e(x2) f(x1) = y1, f(x2) = y2})

I
>

( KA Ye(x) fx1) =1l KA Ve (x0)), f(x2) = vo})
= A7) 7 (y2)}
K@+ v2) 75 v2) 2 X{7(Wa) , 752}

The same procedure is followed for the falsity membership function.

Definition 10. A mapping f on 7, if %, = { Yz, v} is a cubic fuzzy setin f(), % ={ 7z, vz} is
a cubic fuzzy set in 7 then cubic fuzzy set @ ={ Vg, vel = Gpo f, Ve () = (Vz,° f)(%0) = Ve, (f
(x0)) and v (xg) = (vi,° f)( %) = vz, (f () in Tis called preimage of & = { y, vz} under f.

Theorem 5. An epimorphism preimage of a cubic subincline of 7 is a cubic subincline.

Proof: Let f: 7 — 2 be an epimorphism (7,3 are inclines) &, = { Veor v%} is a cubic fuzzy set in
f)and @ ={ Y&, vz} be an inverse image of 2 under f. For x;, x, €7,

Ve (1t %) = (Vg 0+ %)

=Ve (f (1 + x2))

=V (f (x) + f (x2))

Ve (X x2) = (Vg° (1 %)

=V (f (1% x2))

= Ve (f ()= f (x2))

A (Ve (a4 %), Ve (x1x %)) =X (Vg (f (x0) + £ (%2)), Vi, (f (11)* f (%2))
2R 7z f (1)) 7 (f (2)))

2K (e (1),7z (x2))

ve (x1+ X)) = (vgo f)(x + xp)

/-
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=vg (f (1 + %))
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=ve (f (1) + £ (x2))

ve (X1 xp) = (Vg (X1 * Xp)

= vy, (f (1% %))

= vz (f (1) % f (x2))

V(v (i + %) ,ve (X% X)) =V (v, (f (x) + f (x2)) v, (f (1) = f (x2)))
SV (v, (f (1)), v, (F (%2))

SV (ve (1), 77 (%))

Definition 11. Let & ={ 7z, vz} be cubic set of 7 and the cubic level subset is defined as
g(zy,ﬂ):{ Xo €7/ Ve (x0) 2@, vy (Xo) <P §.

Theorem 6. For a cubic set & ={ Vg, ve} € € (7), the following ate equivalent (" (7) is the family of
cubic sets in a set 7).

I. & ={ Y&, vz} is a cubic subincline of 7.
II. The non-empty cubic level set of @ = { Y&, v} is a subincline of 7.

Proof: Assume that & ={ Y&, ve]} is a cubic subincline of .

Letxy,yy €% (% ,(@,p)) forall@ eD[0,1]; B €0, 1].

A cubic set discussed in incline algebraic sub—structure

Then yz (xo) 2@, Yz (Yo) 2 @; vz (Xo) < B, ve (o) < B
By the definition of subincline
A (Ve (Xo+ Yo)» Ve ( Xo* Yo)) = A (Vz (%), Ve (Y0))

=A(a,a)=a

IA

vV (ve (x0+ Yo),ve ((Xo* Yo)) <V (ve (X0), ve (Vo))
=Y (B, p)= .
Sothatxg+ ¥y & Xg* Yy € %(%,(a,ﬁ)).

Thetefore, the non-empty cubic level subset of & = { V, v} is a subincline of 7.

Conversely, assume that & (%,(Ek,ﬂ)) is a subincline of 7 for all f € [0, 1]; @ € DJ0, 1], with
7 (z.,@,p)#0:

1. Suppose that & is not a cubic set and to prove & is a cubic subincline of 7. There exists & € D[0, 1] and
Xg ,Yo € T such that

K (Ve (x0+ Yo),Ve (xox Yo)) <&



<X (77 (x0), 7z (Yo))

vV (ve (Xo+ Yo),ve (( Xox Yo)) <V (ve (X0), v (Vo))
which implies that Xy ,yo € € (£ ; @,V (v (x) , Ve o)),
but (x9 + o), (X*yo) € E(C &,V (v (X0), Ve Wo)))-
This is a contradiction.

II. Now assume that & is a cubic set but Z” is not a cubic subincline, then

A (Ve (xo+ Yo),Ve (Xo* Yo)) <K (Ve (X0), Ve (Yo))and ¥V (ve (X0 + Yo ), Ve (Xo* Yo) > pr >
v

(ve (x9), v (o)) for some p’ € [0,1] and xg ,yy € 7.

Thus, Xo, Yo €€ (€5 (7 (X0), Yz (Y0)), B'),

but (xo + Vo), (Xo™) € € (2 ; (V& (x0), V& (Yo)), B’ ) which is a contradiction.
III.  Assume that there exists @€ D[0, 1],/ € [0,1] and Xy , ¥y € 7 such that

K (Ve (X0+ Yo), 7z ( X0* W) <& <KX (V= (X), Vz (Yo)) and

Y (ve (X0 + Yo ), Ve (o* Yo)) > Pr >V (ve (X0), v o))-
Then x , Yo €E (& ;a, pr) but (xo + Yo), (Xo*Yo) €€ (€, ).
This is a contradiction.
Hence % is a cubic set and % is a cubic subincline of 7.
Therefore, & = { Yz, v} is a cubic subincline of 7.

Theorem 7. For asubset 4 of 7,let & ={ Yz, vz} € E (7) be defined by

_ _ x, ifX0+ Yo, X0 *VYo € %,
Ve (o) = {O, otherwise,

and

_[1, ifxe+ yo Xo*Yo € A,
ve (xo) = {ﬁ, otherwise,

where@ €D [0,1],8 €0, 1] with < .a; Then

I If.# is a subincline of Tthen % = { ¥, v} is a cubic subincline of Tand # (7 ,(@,p)) = 4.

II. If & ={ Y%, v} is a cubic subincline of 7, then .Z is a subincline of 7.

Proof: Assume .# is a subincline of 7.
Obviously, @ (2, @ ,p)) = # .
Letxg,yg € Tifxy, yg € A thenxg+yy, xg*Yyy € # and so

A (Ve (xo0+ Yo),Vz (X% Yo) = @

/-
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<K (7z (%0) , Ve Wo))

v (v (X0 + ¥o),ve (o* ¥o)) =1=V (ve (X0), ve (Vo))
L Ifxg+yy, Xg*Yo & A then

Ve (%o+ Y)=0= Yz (x0* yo) and

(vee (X0 + Yo) =B = ve (Xo* Yo))-
Hence, X (Y (Xo+ Yo ), Ve (X0 * Yo)) 20

=x(0,0)

=X (Fz (%), 7z (%))

Y (ve (Xo+ Yo ), Ve (Xo* Yo)) 2P

=V (BB

=V (vz (X0),ve (Yo) )
IL Ifxg+ yo, Xg*Yo ¢ A then

Ve (Xo+ Yo)=a, Yz (X* Yo)=0 and

(ve (xo+ Yo)=1; v (Xo* Y) = B

A cubic set discussed in incline algebraic sub—structure

A(Yz (X0+ Yo), Ve (X0* Y0)) 20
=x(0,0)

=X (Jz (%), 7z (%))

Y (ve (X0 + Yo),ve (Xo* Yo)) <P
=V (1,p)

=V (vg (%), vz (W) )-

L. Ifxg+ Yo, Xp*Yo & A then

Ve (Xo+ ¥) =0, Pz (%* yo)=a@ and
(ve (Xo+ Yo) =P; ve (o ¥o)) = 1
A(Yz (X0+ Yo), Ve (X0* Y0)) 20
=x(0,0)

<X (Ve (%), 77 (%))

V(ve (Xo+ Yo)ve (Xo* Yo)) <P



=V (1,p)

=V (ve (X0) ,ve (Yo) )-

Therefore, & = { V&, v} is a cubic subincline of 7.

Suppose that & = { Pz, ve} is a cubic subincline of 7.

Xo+ Yo, Xo*Yo & A thenPy (xog+ Yo) = & = Ve (Xo* Yo ),

And (ve (x0+ Yo)=1= vz (X0 * Yo))

A(Vz (X0+ Yo ), Ve (X0* Yo)) = Ve (X0),Vz (Yo))

=Afa,a} >a

V(v (xo+ Yo)sve (Xo* Yo)) < V(ve (x),ve (Yo))

=v(11 =1

Thus, xg + Yo, Xo*Yo ¢ # and therefore, .# is a subincline of 7.

4 | Conclusion

The structure of cubic subincline was introduced in this paper as an extension of the interval valued
fuzzy subincline of incline algebra and analyzed the study of cubic subincline using homomorphic image,
preimage, cartesian product and the level subset. The same idea can also be applied and extended to

many other substructures like regular, filter of an incline algebra for a future scope.

References

(1]

(2]

(3]

(4]

(5]

(8]

]

(10]

Ahn, S. S, Jun, Y. B, & Kim, H. S. (2001). Ideals and quotients of incline algebras. Communications-
Korean mathematical society, 16(4), 573-584.

Ahn, S. S, Kim, Y. H., & Ko, J. M. (2014). Cubic subalgebras and filters of Cl-algebras. Honam
mathematical journal, 36(1), 43-54. http://dx.doi.org/10.5831/HM].2014.36.1.43

Cao, Z. Q., Roush, F. W., & Kim, K. H. (1984). Incline algebra and applications. Ellis Horwood, Ltd.
https://www.amazon.com/Incline-Algebra-Applications-Horwood-Engineering/dp/0470201169

Jun, Y. B, Kim, C. S., & Yang, K. O. (2012). Cubic sets. Annals of fuzzy mathematics and informatics, 4(1),
83-98.

Jun, Y.B., Jung, S. T., & Kim, M. S. (2011). Cubic subgroups. Annals of fuzzy mathematics and informatics,
2(1), 9-15.

Jun, Y. B, Kim, C. S,, & Kang, M. S. (2010). Cubic subalgebras and ideals of BCK/BClI-algebras. Far
east journal of mathematical sciences, 44(2), 239-250.

Jun, Y. B, Ahn, S. S, & Kim, H. S. (2001). Fuzzy subinclines (ideals) of incline algebras. Fuzzy sets and
systems, 123(2), 217-225. https://doi.org/10.1016/S0165-0114(00)00046-4

Kim, K. H., & Roush, F. W. (1995). Inclines of algebraic structures. Fuzzy sets and systems, 72(2), 189-
196. https://doi.org/10.1016/0165-0114(94)00350-G

Kim, K. H., Roush, F. W., & Markowsky, G. (1997). Representation of incline algebras. Algebra
colloquium, 4(4), 461-470.

Muralikrishna, P., Saeid, A. B., Vinodkumar, R., & Palani, G. (2022). An overview of cubic

intuitionistic - subalgebras. Proyecciones journal of mathematics, 41(1), 23-44.

/-

1 Fuzzy. Exi. Appl

90

Manokaran et al. |]J. Fuzzy. Ext. Appl. 4(2) (2023) 81-91


http://dx.doi.org/10.5831/HMJ.2014.36.1.43
https://www.amazon.com/Incline-Algebra-Applications-Horwood-Engineering/dp/0470201169
https://doi.org/10.1016/S0165-0114(00)00046-4
https://doi.org/10.1016/0165-0114(94)00350-G

Ji—.

I Fuzzy. Ext. Appl

91

A cubic set discussed in incline algebraic sub—structure

(11]

(12]

[13]

[14]

[15]

[16]

[17]
(18]

Muralikrishna, P., Davvaz, B., Vinodkumar, R., & Palani, G. (2020). Applications of cubic level set on 3-
subalgebras. Advances in mathematics: scientific journals, 9(3), 1359-1365.

Renugha, M., Sivasakthi, M., & Chellam, M. (2014). Cubic BF-algebra. International journal of innovative
research in advanced engineering, 1(7), 48-52.

Muralikrishna, P. (2022). Application of MBJ-neutrosophic set on filters of incline algebra. International
journal of neutrosophic science (IJNS), 19(1), 60-67.

Arvinda Raju, V. (2017). A note on incline algebras. International journal of mathematical archive, 8(9), 154-
157.

Wang, F. (2018). Intuitionistic anti-fuzzy subincline of incline. 2018 3rd international conference on
communications, information management and network security (CIMNS 2018) (pp. 96-100). Atlantis Press.
Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338-353.

Rosenfeld, A. (1971). Fuzzy groups. Journal of mathematical analysis and applications, 35(3), 512-517.
Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20(1), 87-96.



E-ISSN: 2717-3453 | P-ISSN: 2783-1442

{1/-—

J. Fuzzy. Exi. Appl

Journal of Fuzzy Extension and Applications

J. Fuzzy. Ext. Appl. Vol. 4, No. 2 (2023) 92-114.

Paper Type: Research Paper

Intuitionistic Fuzzy Complex Subgroups with Respect to
Norms (T,S)

Rasul Rasuli*

Department of Mathematics, Payame Noor University (PNU), Tehran, Iran; rasulirasul@yahoo.com.

Citation:

[=]

e

! E Rasuli, R. (2023). Intuitionistic fuzzy complex subgroups with respect to norms (T,S). Journal of fuzzy

1 extension and applications, 4(2), 92-114.

Received: 09/01/2023 Reviewed: 12/02/2023 Revised: 16/04/2023 Accepted: 21/05/2021

Abstract

In our work in this paper, we define intuitionistic fuzzy complex subgroups with respect to t-norm T and s-norm S and

investigate

some properties of them in detail. Next, we obtain some results about them and give some relationships

between them. Later, we introduce the inverse, composition, intersection and normality of them and we prove some

basic new results and present some properties of them such that the inverse and composition of two intuitionistic fuzzy

complex subgroups with respect to t-norm T and s-norm S will be intuitionistic complex fuzzy subgroups with respect

to t-norm T and s-norm S. Also we consider and give some characterizations of them. Finally, we discuss them under

group homomorphisms and investigate some related properties such that the image and preimage of two intuitionistic

fuzzy complex subgroups with respect to t-norm T and s-norm S will be intuitionistic complex fuzzy subgroups with

respect to t-norm T and s-norm S.
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| Introduction

In mathematics, fuzzy sets (uncertain sets) are somewhat like sets whose elements have degrees of
membership. The concept of fuzzy sets was introduced by Zadeh [1] in 1965. Atanassov [2] innovated
the theory of Intuitionistic Fuzzy Sets (IFS) as a powerful extension of classical fuzzy sets. This
particular theory has been a great source of inspiration for many mathematicians in various scientific
fields like decision making problems [3] and medical diagnosis determination [4]. Roenfeld [5] started
the investigation of fuzzy subgroups and found numerous essential properties of this concept. Biswas
[6] started the conception of intuitionistic fuzzy subgroups in 1997. A new concept of complex fuzzy
sets was presented by Ramot et al. [7]. The extension of fuzzy sets to complex fuzzy sets is comparable
to the extension of real numbers to complex numbers. The more development of complex fuzzy sets
can be viewed in [8]. Alkouri and Salleh [9] gave the idea of complex intuitionistic fuzzy subsets and
enlarge the basic properties of this phenomena. This concept became more effective and useful in
scientific field because it deals with degree of membership and non-membership in complex plane.

They also initiated the concept of complex intuitionistic fuzzy relation and developed fundamental
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operation of complex IFSs in [10]. Al-Husban and Salleh [11] introduced the concept of complex fuzzy
subgroups in 2016. Ali and Tamir [12] innovated the notion complex intuitionistic fuzzy classes in 2016.
The author by using norms, investigated some properties of fuzzy algebraic structures [13—15]. In Section
2, we recall the elementary notions which will be needed in the sequel. Next, in Section 3, we define
intuitionistic fuzzy complex subgroups with respect to t-norm T and t-conorm S (in shott, IFCN(G)) of G
and investigate properties of them as Propositions 2 and 3. Later, in Section 4, we introduce composition,
inverse and intersection of two elements A, BEIFCN(G) and we prove that AoB€IFCN(G) and
ANBEIFCN(G) under some conditions. Also in Section 5, we define normality of two elements
A,BEIFCN(G) and discuss some properties of them. Finally, in Section 6, we investigate image and pre

image of them under group homomorphisms.

2 | Preliminaries

We recall first the elementary notions which play a key role for our further analysis. This section contains
some basic definitions and preliminary results which will be needed in the sequel. For details we refer to
[2,7,9], [16-21].

Definition 1. A group is a non-empty set G on which there is a binary operation (a, b) as ab such that

I. If a and b belong to G then ab is also in G (closure).
II. a(bc)=(ab)c for all a, b, ¢ €G (associativity).
III. There is an element eg€G such that aeg=ega=a for all a€G (identity).
IV. If a €G, then there is an element a €G such that aa'=a"a=e (inverse).
One can easily check that this implies the unicity of the identity and of the inverse. A group G is called
abelian if the binary operation is commutative, i.e., ab = ba for all a,b €G.

Remark 1: There are two standard notations for the binary group operation: either the additive notation,
thatis a, b)=a+b in which case the identity is denoted by 0, or the multiplicative notation, thatis a, b)=ab
for which the identity is denoted by e.

Definition 2. Let G be an arbitrary group with a multiplicative binary operation and identity e. A fuzzy

subset of G, we mean a function from G into [0,1].

Definition 3. For sets XY and Z, f=(f;, f,) :X—YXZ is called a complex mapping if f;:X—=Y and f, :X =Z
are mappings.

Definition 4. Let X be a nonempty set. A complex mapping A=(p15, 94) :X—[0,1]x[0,1] is called an IFS
in Xif ps+ 94 <1 where the mappings p, :X—[0,1] and 9, :X—[0,1] denote the degree of membership
(namely s (x)) and the degree of non-membership (namely 94(x)) for each xeX to A, respectively. In
particular 0. and 1. denote the intuitionistic fuzzy empty set and intuitionistic fuzzy whole set in X defined
by 0.(x) = (0,1) and 1..(x)=(0,1), respectively. We will denote the set of all IFSs in X as IFS(X).

Definition 5. Let X be a nonempty set and let A=(u 4, 94) and A=(up, 9g) be IFSs in X. Then

I. AcB lff‘UA S/JB and SA > SB‘
II. A=B iff ACBand BC A.

Definition 6. Let X be a nonempty set. A complex fuzzy set A on X is an object having the form A = {(x,
pa(x))Ix € X}, where u, denotes the degree of membership function that assigns each element x € X a
complex number 14 (x) lies within the unit circle in the complex plane. We shall assume that is p4(x) will

be represented by rA(X)ejWA(X) where 1'=\/-7, and r: X — [0,1] and w: X — [0,2r]. Note that by setting



w(x) =0 in the definition above, we return back to the traditional fuzzy subset. Let p;=r;e™1, and
Uo=r,e"2 be two complex numbers lie within the unit circle in the complex plane. By p; < p,, we mean ”’-
r; <rpand w; < w,.
J. Fuzzy, Exi. Appl
Definition 7. A complex IFS A, defined on a universe of discourse U, is characterized by membership
and non-membership functions 4 x) and ¥4 x), respectively, that assign any element x € U a complex- 94
valued grade of both membership and non-membership in S. By definition, the values of 4 x) and
¥4 X) and their sum may receive all lying within the unit circle in the complex plane, and are on the form
Ha X)=T'p x)e™ha Y for membership function in § and y, x)=k, x)einA Y for non-membership
function in A, where i= \/-7, each of ry x) and k, x) are real-valued and both belong to the interval [0,1]
such that 0 < ry x)+ k, x)<1and iw

ua X) and iw,, ) are real-valued.

Definition 8. A t-norm T is a function T:[0, 1]x[0, 1]—[0, 1] having the following four properties:
1. T x,1)= x (neutral element).

II. Tx, y)<T x, z)if y <z (monotonicity).
III. Tx, y)=T y, x) (commutativity).

IV. T(x,Ty,z))=T T x,y), 2) (associativity).
Forallx, y, z€ [0, 1].
It is clear that if x;>x,and y;2y,, then T xq, y1)> T X5, y2).

Example 1.

I. Standard intersection T-norm T, X, y):min{x, y}

II. Bounded sum T-norm T x, y):max{O, X+ y- 1}.
III.  Algebraic product T-norm Tp X, V)= XY.

Rasuli |J. Fuzzy. Ext. Appl. 4(2) (2023) 92-114

IV. Drastic T-norm.

(v, if x=1,

Tp xy)=1{x, if y=1,
lO, otherwise.

V. Nilpotent minimum T-norm.

T x)= {rgin[xf yho iy,

, otherwise.
VI. Hamacher product T-norm.
J/ 0, if x=y=0,
— X
T, xy)= |—y, otherwise.

(X+y-xy
The drastic t-norm is the pointwise smallest t-norm and the minimum is the pointwise largest t-norm:
Tp x,y)< T x, y)< T,, x, y) for all x, y€[0, 1].

Recall that t-norm T will be idempotent if for all x € [0,1], we have T x, x)=x.

Lemma 1. Let T be a t-norm. Then
T(T x,y), Tw, z))z T(T x,w), Ty, z)), forallx,y,w, z €[0,1].

Definition 9. An s-norm S is a function S:[0, 1]x[0, 1]—[0, 1] having the following four properties:

1. Sx 0)=x.
II. Sx, y)<S x, z) ify< z.
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III. S(x, y)=S(y, x).
IV. S(x, S(y, 2)=S(5(x y), 2).

For all x, y, z€[0,1].
We say that S is idempotent if for all x€[0,1], S(x, x) = x.

Example 2. The basic S-norms are

Sm(x, Y) = max{x, Y}/
Sp(X, y) = min{l, x + y},

and

Sp X, y)= X+y-Xxy,
For all x, y€[0,1].

Sy is standard union, S, is bounded sum, S, is algebraic sum.

Lemma 2. Let S be a s-norm. Then S(S X, y),Sw, z)): S(S x,w),Sy, Z)), tor all x, y, w, z€[0,1].
Proposition 1. Let G be a group. Let H be a non-empty subset of G. The following are equivalent:

1. H is a subgroup of G.
1. x, yeH implies xy '€H for all x, y.

Definition 9. Let H be subgroup of group G. Then we say that H is normal subgroup of G if for all g €G
and h € H, we have that ghg 1eH.

Definition 10. Let G and H be any two groups and f:G—H be a function. Then f is called a
homomorphism if f xy)=f x)f y) for all x, y €G.

3 | Intuitionistic Fuzzy Complex Subgroups with Respect to Norms (t-
Norm T and s-Norm S)

Definition 11. Let G be a group such that 4 =r,e™4 and 9, = r e™A be two complex fuzzy sets on G.
An A= p,, 9,)€IFS G) is said to be intuitionistic complex fuzzy subgroup with respect to norms( t-norm
T and s-norm S) (in short, IFCN(G)) of G if

I Ry xy)ZT(rA X), I'p y)).

II. rA(x'l)ZrA X).

I, Wy, xy)Zmin{wA X), Wh y)}.

IV. Wa(xT)2wy X).

V. R, xy)SS(rA X), I'p y)).

VL Ry(x7)<r, x).
VIL. W, xy)< max[wA X), W y)}.
VIL Wa(xT)sw, x),

For all x, yeG.



Example 3. Let G = {0, a, b, ¢} be the Klein’s group. Every element is its own inverse, and the product

of any two distinct non-identity elements is the remaining non-identity element. Thus the Klein 4-group ”’-
admits the elegant presentation a? = b?> = ¢?= abc = 0. Define r, : G — [0, 1] by

{075, lf X = a, 1 Fuzzy. Exi. Appl
10.65, ifx=b, —
ra X)= !I 0.55, ifx=c, 96

i

10.45, ifx=0,

and w, : G — [0, 2rt] by

(0.45T, ifx=a,
|0.457, ifx=Db,
Wa ><)={i 0.557, ifx=c,

10.657, if x = 0.
ry:G—[0,1]by

(0.25, ifx=a,

1 0.35, ifx=b,

A ><)=<E 0.45, ifx=c,
10.55, ifx=0,

and w, : G = [0, 2rt] by

(0.557, ifx=a,

10.557, ifx=b,

WA= 45 0.457, ifx=c,
l0.35m, if x = 0.

Let T(a, b) = Tp(a, b) =ab and S(a, b) = Sp(a, b) =a+b-ab for all a,b€[0,1], then A=y, 9,)€
IFCN G).

Proposition 2. Let A = u,, 94)€IFCN G) and T and S be idempotent. Then forall x € G,and n>1,

Rasuli |J. Fuzzy. Ext. Appl. 4(2) (2023) 92-114

1. A(e) 2 A(x).
II. Ax") 2 A(x).
1. A(x)=A(x7).

Proof: As py =rye™4 € ICEN(G) so
1.

ra(e) =ra(xx?) = T(ra(x), ra(x ™)) = T(ra(X), ra(x)) = ra(x),

and
wa(e) = wa(x™) = minfw A (%), W (x ™)} 2 min{w a(x), Wa(X)} = wa(X),
and then
pa(e) = ra(€)e™arl) > 1y (x)e™at) = 14 (x). @
Also
wa(e) = wa(xx™) < maxfw s (x), wa(x™)} < maxtw A (x), wa (X)) = wa(X),
and so
a(e) =ra(e)e™a® <1, (x)eiWaX = §,(x). (b)

Now from Egs. (a) and (b) we obtain that
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Ale) = (ale), da(e)) 2 (Ha(X), Fa(x)) = A(X).

II.
TAGX™) = 1A XXX | 2T(1A X)1A ), T A(X))=TA(X),
n n
and
( \
wa(XM)=wyu I X.X... X I >min{wp X),Wa X),..Wa(X)}=wa(x),
n n
and so
A XM)=1a XM)eWA XD 21y x)elVaN) = iy X). @)
Also
( )
TA(X™)= 1A | XXX | <S{1p X), 1A %), kA =TA(X),
U/ n
and
( \
WA (XP)= Wa | XXX i <max{wa X),Wa X),..Wa(X)}=wa(x),
n n
and
Q4 XxM=1,5 XMe™WaX) <, x)e™WaN = §, x). (b)

Now using Egs. (a) and (b) give us
A xM)= (HA X1, 9 x“)):_) (HA x), 9 X)): A X).
III.  As

1
ra X)= rA(x'l) > rA(x'1)ZrA X),

and so r, X)= rA<x'1) and as
W X)= wA(x'l)_1 > WA(x'l)Z WA X).
Then w, x)= WA(X'I), Then

pA(x'l): rA(x'l)eiwA(X_l): ra X)eWaX = 1\ x). @

Now

1
ra X)= rA(x'l) < rA(x'l)S ra X),

SO Ty X) = rA(x‘l) and as

1
WA X)= wA(x'l) < wA(x'l)SwA X),



SO Wy X)= WA(X'I). Then

SA(X‘l): rA(x'l)eiwA(x_l)z rp X)eWaX = §, x). (b)
Thus from Egs. (a) and (b) we give that

AKXT) = (pa),8a(x™) = (Ha(), Ba(0)) = A().

Proposition 3. Let A = 14, 9,)€IFCN G)and T and S be idempotent. Then A(xy)=A(y) if and only
if A(x)=A(e) for all x, yeG.

Proof: As A xy)=A y) for all x, y€G so if we let y=e, then we get that A x)= A e).

Conversely, suppose that A x)=A e) so from Proposition 2, we get that A x)2A y) and A x)2 A xy).
Thenry x)>r, y) and ry X)> 1,4 Xy) and wy X)> W, y), Wy Xy). Also rq X)<1, y) and ry X)<14 XY)
and wy )< wy, y) and wy X)< wy XYy).

Now

ra Xy)> T(rA X), A y))

> T(rA V), T y))

=T1A V)= rA(x'lxy)

> T(rA X),TA xy))

> T(rA Xy),X A xy))

=TA Xy),
and then

IA XY)=TAY) (@)
Also

WA XY)> min[wA X), W A y)]

Zmin{wA V), Wa y)} =Wy y)= WA(x'lxy>

> min[wA X), W xy)]

zmin{w A XY),Wa XY)}

=Wa Xy),
and then

WA XY)= Wy V). (b)
Therefore from Egs. (2) and (b) we obtain that

Ha XY)=T1A Xy)e™a V=1, y)e™ay) =y y). ©
Also

ra Xy)< S(rA X), T'A y))
< S(rA V) LA y))
=TIpY)= rA(x'lxy)
< S(rA X), T'a xy))
< S(rA Xy), XA xy))
=TrA XYy),
Then
I'A XY)=TA Y). @

/-

1 Fuzzy. Exi. Appl

98

Rasuli |J. Fuzzy. Ext. Appl. 4(2) (2023) 92-114



Ji—.

I Fuzzy. Ext. Appl

929

Intuitionistic fuzzy complex subgroups with respect to norms (t,s)

Also

WA Xy)< max{wA X), WA y)}
Smax{wA V), WA y)}

=W, y)= wA(x'lxy)
Smax{wA X), W xy)}

gmax{wA Xy),W A xy)}

=Wa Xy),
and then

WA XY)=Wa y). (©
Therefore from Egs. (d) and (¢) we obtain that

94 xy)= 14 xy)e™A V=1, y)eWay = 9, y). ®

Now as Egs. (¢) and (f) we get that
Alxy) = (HAGY), dabxy)) = (Ha(Y), 9aly)) = Aly)-

4 | Composition, Inverse and Intersection of IFCN(G)

Definition 12. Let A= u,, 9,)€IFCN G) and B= g, 93)€ IFCN G) such that p,=r,e’”4€lFCN G) and
du=re™A and up=rge™s and 9p=rze™B. We define the composion of A and B as A oB and for all xéeG

we have
AoB) X):( Ha, 9A) O g, SB)) X):(HAOB x), SaoB X)):
((raorp)(x)ei™aownlt, (r,org)(x)eia o ws)e),
Such that ry o rg :G —[0, 1] and wowg : G — [0, 2r] and ry 0 rg :G — [0, 1] and w0 wg :G —[0, 27].

Now define

,(sup T(rA a), rp b)), if x=ab,

ra 0Tg) 0= ceab

\0, if x # ab,
and
min{w a),wg b)}, if x=ab,
(Wa 0 Wp) )= X2
0, if xzab,
and
(raorg) x) = {xlzglfa S(rA a)Tp b)>' if x=ab,
0, if x# ab,
and
max{wa a),wp b)}, if x=ab,
(Wa 0 wWp) X)={ x=ab
0, if xzab,
For all xeG.

Proposition 4. Let A1=(u 7, SA_1)€IFS(G) be the inverse of A= iy, 94)€IFCN(G) such that for all x€G:

- - -1 - - -
AT0=(a (9, 947 (=(ax ), VAKXT)=A(xT).
If T and S be idempotent then A= u,, 9,)€IFCN G) if and only if A satisfies the following conditions:

I. ADA o A.
I Al=A.



Proof: Let x, y, z € G with x = yz and A€ICF N(G). Then

L

rA(X) =1A(yz) 2 T(ra(y), 1a(2)) = (ra 0 TA)(X),
and
WA(X) = wa(yz) =2 min{w 5 (y), wa(2)} = (Wa 0 W)(X),

then

ba X)=Ta X)e"aX > 1, 01,) x)elWaowaltd = 1, 1) x).

Also
rA(¥)=ra(yz) <S(ra(y), ra(z))=(ra 0 ra)(x),
and
WA X)=Wa y2)2 min[wA V), Wa z)}z WaA OWy) X),

then

94 X)=1p X)eVAX > 1, 01,) X)elWaowa) = §, ) x).

Thus from Egs. (a) and () we get that

AX) = (Ha(X), Da(¥) 2 (Laoa)(X), Sa0a)(X)) = (A 0 A)(X),

and then ADA 0A.

1. As Proposition 2, we have that A1(x) = A(x!) = A(x) for all X€G. Thus A=A,

@)

(b)

Conversely, let A2 A oA and AT=A and X, y, z €G with x =yz . Since ADA 0 A 50 ra(X) = (rs 01)(x)

and then

I'A VZ) = T'p X) > [AOrp X) = SUp T(rA V), I'p z)) > T(rA V), TA z)).

x=ab

wa(X) 2 (Wa 0 wa)(X) and thus,

WA VZ)=WA X)> WA OWp) x):)g:l}i,?[wA V),Wg z)] Z[WA V), Wa z)}.

ra(x) < (ra ory)(x)and then,

£ y2)=ra Y<taors X)= inf S(ra y), 15 2)) <5(ra y), £a 7))

Wa(X)S(W4 0 Wu)(x)and so

WA VZ)=WA X)< WAOW,) X)=£I:13;({WA V) Wa Z)} S{WA V), Wa z)}.

As AT=A so,

rA<x'l)= 1Al X)=rp X).
rA<x‘1): Al X)=r4 X).
WA<X'1)= wal X)=wu X).
wA<x'1): wA'l X)=Wa X).

Thus from Egs. (a)-(h), we get that AEIFCN(G).

@)

)

©

@

®
©
()

/-

1 Fuzzy. Exi. Appl

100

Rasuli |J. Fuzzy. Ext. Appl. 4(2) (2023) 92-114



Corollary 1. Let A= iy, 94)€IFCN G) and B= up, 93)€IFCN G) and G be commutative group. Then
”’- A 0 BEIFCN(G) if and only if A 0 B=B o A.
i

J. Fuzzy. Bxt. App Proof: If A, B, A 0 BEIFCN(G), then from Proposition 4 we get that A1 = A, B! = Band (BoA)! =B o A.
Now A o0 B= A 0 B =(BoA)! =B o A. conversely, since A 0 B=B o A we have

101 (AoB)"! =(BoA)! =A™ 0 B =A 0 B.
Also

(AoB)o(AoB)=Ao(BoA)oB=Ao(AoB)oB=(AoA)o(BoB)CA oB.
Now Proposition 4 gives us that A o BEIFCN(G).

Definition 13. Let A= p,, 94)€IFCN G) and B= up, 93)€ IFCN G) such that, us=r e’”4 and 9, x)=

rae™4 and up=rpge’? and 9 x)=rpes. define the intersection of A and B as A NB such that for all xeG:

(AN B)(x) = (pa, 9a) N pp, 9p))(X)
=(tans(x), VANB(x))
=((raNrp)(x)eWams), ((ran rp)(x)e’ WAN VBN,

Such thatry Nrg: G — [0, 1] and wNwg: G — [0, 27] and raNrg:G—[0,1] and
wa MWy 0 G — [0, 21] define:

1A N1p) X>:T<rA X), A X)),

wa Nwg) X)=min{fw, x), wa X)},

rp Nrp) X)= S(I‘A X), ' X)>,

waN wp) x)=max{wa x), wp X)},

forall x € G.
Proposition 5. Let A= 1, 9,)€IFCN G) and B= up, 95)€IFCN G). Then ANBEIFCN G).

Proof: Let A= u,, 94)EIFCN G)and B= g, 93)€ IFCN G) such that s =rye™4 and 94 x)=rae4 and

pp=rge™B and 95 x)=rze™B.

I. Let g1,82€G. then

Intuitionistic fuzzy complex subgroups with respect to norms (t,s)

(ra N1E)(g182) =T (ra(g182), rB(8182))

> T (T (ra(g1), ra(g2), T (ra(g1), 18(82)))

=T (T (ra(g1), r8(g1), T (ra(g2), r8(g2))) (Lemma 1)
=T ((raN r)(g1), (ra Nrp)(g2)),

and thus

(ra NrE)(g182) = T ((ra N1E)(g1), (ra NIE)(E2))-
II. If g €G, then

(ra Nrp)(gH=T (ra(g™), rp(g™M))=T (ra(g), ra(g)=(ra N rp)(g),

and so 1N rB)(g'1)2 raNrg) g).
III. If g € G, then

WANWE) g182)=min {wa g18,), Wi g182)}

> min{min{w s g1),Wa g2)}, minfwg g1),wg g2)}}
=min {min {w, g;),wp g1)}, min {wg g2),wg g2)}}
=min{ waN wg) g1), Wa NW3g) )},



and s0 W, NWp) glgz)zmin{ WAN Wp) 81), Wa NWp) gz)}.

{17
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IV. Letg€G,so

(wanwg)(g 1)=min{w (g ™), ws(g™)}zminfw s g), wp g)i=(WANWE)(g),

and so (wAﬂwB)(g‘l)z(wAmwB) 2) 102

V. Let gl,gzeG. then

ra NTp) 8182)=S (ra 8182), T'5 8182))
<S (S (I‘A 81), Ta gz))/ S (I‘B 1), I gz)))

=S (S (TA gl)r s gl))/ S (rA gz), s gz))) Lemma 1)
=S ( rANTp) 1), Ta NIp) gz)),
and thus

(raNTB)(8182)SS((raNTE)(g1), (rANrE)(g2)).
VI. If g€G, then

(ra Nrp)(g™)=S (ra(g™), ra(8 ))<S (ra(g), ra(g)=(ra N rp)(g),

and so r,N rB)(g'I)S ra Nrg) g).
VIIL. Let g4,82€G. Then

WANWE) g182) = max {wWu g182), Wi g182)}

< max{max{wa g1),wa g2)}, max{wg g1),wg g)}}
=max {max {wu g1),wp g1)}, max {w, g>),wg g2)}}
= max{ waN Wg) g1), wa NW3) go)},

Rasuli |J. Fuzzy. Ext. Appl. 4(2) (2023) 92-114

and so w,Nwg) ngZ)Smax[ WAN Wp) 81), W4 NWp) gz)}.
VIIL. Letg€ G, so

wAﬂwB)(g'1)=max{wA(g'1>, WB<g'l>}§max{wA g), Wp g)}= wANWE) ),

and so (W’Aﬂw'B)(g'l)S(w'AﬂW'B) g)
Then above steps give us that ANBEIFCN(G).
Corollary 2. Let I,={1, 2, .., n}. If {A;=(un, 94,) i€ I,} SIFCN(G).

Then A=Nep, A ; €IFCN(G).
5 | Normality of ICFN(G)

Definition 14. Let A= pu,, 94)€IFCN G)such that py=r,e™4 and 9, x)=rse™A. We say that
A=y, 9,)is normal if for all x, y€G, we have that A(xyx?) = A(y) which means that r, (xyx™) = r,(y)
and wy (xyx™1)=w,(y) and r, (xyx™) =r,(y) and WA(ny'1>=WA y). We denote by NIFCN(G) the set

of all normal intuitionistic fuzzy complex subgroups with respect to norms (t-norm T and s-norm S).

Proposition 6. Let A= p,, 94)ENIFCN G) and B= pup, 95)eNIFCN G) such that p,=r,e™4 and
94 X)=rpe™4 and pup=rze™s and 95 x)= rze™B. Then ANBENICFN G).
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Proof: As Proposition 5 we have that ANBEIFCN G). Let x, y, €G then

L (rp Nrp)(xyx?) =T(raleyx™), rpixyx™)) = T(ra(y), r5(y)) = (ta N 16)(Y).
L (wa N wi)(xyx™)=min{w, (xyx), wy(xyx?)}=minfw , y), wy y)=(w, 0 wp)(y).
L (ra( N rpxyx™) =S(ra((xyx™), rp(xyx™)) = Sra((y), r5(v)) = Ca( N 15)(y).
IV. (W, N wg)(xyxT!)=max{w (xyx'l), W'B(xyx'l)}: max{w, y), Wg y)}l=(Ws wWg)(y).

Then from above steps, we get that

(AN B)(ny_l):(HAmB(XyX_l)r SAHB(ny_l)):(HAﬂB(Y)/ Sans(¥))=(A N B)(y).
And so ANBENIFCN(G).
Corollary 3. Let I,=(1, 2, .., n). If {A ;=(ii , 95)) | i€ I,] CNIFCN(G). Then A=(";c;, A; ENIFCN(G).

Definition 15. Let A= u,, 94)ENIFCN G) and B= up, 9)€IFCN G) such that AC B. Then A is called
normal of B, written ACB, if

L. rA(xyx'l)zT(rA y), g x)).

I ()2 min [ wa(y), Wil
I11. rA(xyx'l)SS{rA y), g X)}.
IV. wy(xyx)<max{w,(y), wg(x)}.

For all x, yeG.
Proposition 7. If T and S be idempotent and A= 11,, 8,)€IFCN G), then ACA.
Proof: Let x, yeéG and A= p,, 94)€IFCN G). Then
rA(ny'l)ZT (rA Xy), rA(x'l))
> T(rA Xy), Ta x)) >T (T(rA X), TA y)), ra x))
=T (T(ra )14 %), 14 1)) =T(ra 0,14 )= TCAG), AK),
and so

rA(XyX'l)Z T(rA V), TA x)). 1)

also

waeyx omintw s xy), ()
=min{w, xy), wa X)}

> min{min{w A X), Wyp y)}IWA x)}
= min{min{w X), wa X)},wa )}
=min{wa X), wa y)}

=min{w, y), wa X)},

Then

wA(xyx‘l)Zmin{wA V), Wa X)}. 2



rA(xyx'1)§S (rA xy), TA<X'1)) ”’-

<S(ra xy), 14 X)) Wi, e i
<S (S(rA X), TA y)), ra x)) 104
=5(S(ra )14 %) 14 )

=S(ra x), A y))

=S(ra(y), ra(x),

thus

rA<xyx'l)s S(rA V), Ta x)). 3)
Finally,

WA(xyx'l)Smax{wA xy), wA<x'l)}

<max{wa Xy), wa X)}

< max{min{wA X), WA Y) },WA x)}

= max{min{w Xx), Wa X)},W, V)

=max{wa X), Wa )}

=max{wa y), Wa X)},
then

WA(xyx'l)Smin{wA V), wa X} “4)

Then Egs. (1)-(4) give us that ACA.

Proposition 8. Let A= py,, 94)ENIFCN G) and B= ug, 93)€IFCN G) such that p,=rse™4 and

94 X)=rpe™4 and pp=rze™® and 9 x)=rge!”B. If T and S be idempotent, then ANBLB.

Rasuli |J. Fuzzy. Ext. Appl. 4(2) (2023) 92-114

Proof: As Proposition 6 we have that ANBENIFCN(G). Let x, y€G then

(ra ﬂrB)(xyx'1)= T((ralxyx™), rp(xyx™))
= T((raly), rp(xyx™))

> T(rA(y), T(rp(xy), rg(x )

> T(ra(y), T(T (rp(x), ra(y)), r8(X)))
=T(ra(y), T(ra(y), T (rp(x), ra(x))))

=T (I‘A Y), T(rB Y)/ rs X)))

=T (T(rA y), s y)), rp X))

= T((ra Nre)(y), r(x)),
and then

(ra Nrp)(xyx™)2T((ra Nrp)(y), T5()). ©
Also
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(wanwp)(xyx )= min{(w A (xyx ), wp(xyx™))

= min{(w(y), w(xyx™)}
> min{w (y), min{wg(xy), wg(x )}
> min{w 4 (y), min{min{wg(x), wg(y)}, wg(x)}}

= min {WA Y miﬂ{WB y), Min{wg x), wp X)}}}

=min {WA y),min{wB y), Wg X)}}

= min{min{w A (y), wp(y)}, wp(x)}}
= min{(waNwp)(y), wp(X)},

then
(WAﬂWB)(XYX_l)Zmin{(WAﬂWB)(Y): wa(X)}. ©)
Now

(ranrp) (xyx)=S((ralxyx?), rpxyx ™)
=S((ra(y), ra(xyx™))

< S(ra(y), S(rp(xy), rg(x1))

<S (ra(y), S(S(rp(x), rp(y)), rp(x)))
=S(ra(y), S(rp(y), S(rp(x), T5(X))))

sl tosiren)

=S (S(rA y), Ip y)), Iy X))
=S((ra Nrp)(y), ra(x)),
and then

(ra Nrp)(xyx)<S((ra Nrp)(y), Tp(¥)). )

(wAﬁwB)(xyx'l): min{w A (xyx 1), wg(xyx ™)}

= min{w A (y), wp(xyx ™))
> min{w A (y), min{wg(xy), wg(x )}}
> min{w A (y), min{min{wg(x), wg(y)}, wa(x)}}

= min {WA y), minle y), min{wg X), wg X)}]

=min {w A y),miﬂ{WB y), Wg X)}}
= min{min{w o (y), wg(y)}, wg(x)}}
= min{(waNwg)(y), Wp(x)},

then

(wanwp)(xyx!)2min{(w sNWp)(y), wp(x)}. ®)
Then Egs. (5)-(§) mean that ANBLCB.
Proposition 9. Let A= 14, 94)€IFCN G) and B= ug, 93)€IFCN G) and C= ¢, 9¢)€IFCN G) such that

pa=rae™a and 9, x)=rye™a and up=rge™s and 9y x)=rge™s and pc=rce™C and ¢ x)=rcec
Let T and S be idempotent and ACC and BCC. Then ANBLCC.



Proof: From Proposition 6 we get that ANBEICFN(G). Now for all x, yeéG we get that

(ra Nrp)(xyx™) = T(ra(xyx™), rp(xyx™)) ”’-
> T(T(ra(y), rc(x)), T(rp(y), rc(x))
= T(T(rA(y), 8(y)), T(rc(x),rc(x)))
= T(T(ra(y)rp(y)), rc(x)) 106
=T((ra N1B)(y),rc(x),

and then
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ra N rB)(xyx'l)zT( ra NIp) V)IcC x)). 9
Also

wa N wB)(xyx‘l)z min{WA<xyx‘1) WB<xyx‘1)}

> mm[mm[wA y).Wc¢ x)} mm{wB y).Wc¢ x)}}

—mln[mm[wA y),Wp y)] min{wc X),wc x)} ]

= mm{mm{w A Y)WB y)}, wc x)}

= min{(wa N wp)(y),wc(x)),
then

(waN wp)(xyx!)zmin{(w A0 Wg)(y),Wc(X)). (10)
As

(ranrp)(xyx™) =S(ra(xyx™), rp(xyx™))

<S(S(ra(y), re(x)),S(rp(y), re(x)))

=S(S(raly), r8(y)), S(rc(x),rc(x)))

=5(S(ra(y).rB(y)), 1c(x))
=S((raNrp)(y)rc(x),

SO
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rAﬂrB)(xyx'l)SS( raNIg) y)rc x)). (11)
Since

(Wanwpg)(xyx1) = max{wA<xyx'l), WB<XyX'l>}

< max{max{w, y),wc x)}, max{wg y),wc x)}}

= max{max{w, y),wp y)}, max{wc x),wc x)}} =max{ max{w A Y)Wp y)], (12)

we x)}
= max{(wa NWg)(y),wc(x))-

then

(wanwp)(xyx 1) <max{(w AN Wg)(),wc(x)). (13)

Then as Egs. (9)-(13) we get that ANBCC.

Corollaty 4. Let[,=(1,2, ..., n). If (A =(a, 94) /i€ I} CIFCN(G) such that [A=(us, )i
I,JEB= pp, 9p). Then A=)y, A; CB= up, 9p).

6 | Group Homomorphisms and IFCN(G)

Definition 16. Let A= p,, 94)€IFCN G) and B= up, 9p)€IFCN H) such that ps=rse™a

and9, x)=r,e™4 and pp=rze™s and 9y x)= rge"s.



Ji—.

I

Fuzz

v, Ext. Appl

107

Intuitionistic fuzzy complex subgroups with respect to norms (t,s)

Let ¢ :G—H be a group homomorphism. Define:
@ A)= 9(1a), P(OA)=(P(rae™4), p(rae™4))=(p(ra)e ?™»), p(ry)e?(4))).
For all h € H define:

@(ra) :H-[0, 1] as @(ra)(h) = sup{ra(g) | g€ G, p(g)=h},
p(w ) :H—-[0, 21] as o(w o )(h) =sup{w A(g) | g€ G, @(g)=h},
@(ra) H—-[0, 1] as @(ra)(h) = inf{ro(g) | g€ G, o(g)=h},

nd

P(wa):H—[0, 21] as p(w p )(h) =inf{w A(g) | g€ G, ¢(g)=hl}.
Also define

o7 B)=(¢™ (up), ¢ (9p))=(9 (rpe™?), o (rpe™s))=
((p—l(rB)eiﬂp'l(wB))/ (P—l (I.B)eicp'l(wB))),
such that for all geG:
¢ (rp) :G—1[0, 1] as 97 (rp)(8) =r(¢ 8)),
¢ (rp) :G—[0, 1] as 7 (rp)(8) =r5(¢ 8)),
¢ (wp) :G—[0,21] as ¢ (W)(8) =wp(P g)),
¢ (wp) :G—[0,21] as ¢! wy) g):wB<(p g)).

Proposition 10. Let A= u,, 94)€IFCN G) and H be a group. Suppose that ¢ : G — H is a group
homomorphism. Then ¢(A)eIFCN(H).

Proof: Let @ A)= @(ua), p(S2)=(p(ra)e’?™™), p(r))e™)) and h;, hyeH and g;, §,€G such that
®(g1) = hy and ¢(g2) = hy. Then

p(ra)(hihy)=supfra(gi1g2) | g1= ¢(h1), g2 =p(hy)}

>supf{T(ra(g1), rA(g2)) | g1=p(h1), g2 = p(hy)}

=T(sup{ra(g1) | g1 =p(h1)},supi{ra(g2) | g2 =p(ho)})

=T(p(ra)(h1), ra)hy)),

and so

¢ 14) hihy)2T(¢ 1) hy), ¢ r4) hy)). (14)
Let g€G and heH such that ¢(g)=h. Then

pra)hh)=supfra(g™) g € G, (g )=h"}

> sup{rA(g) | g €G,9(g)=h"}

= supi{rA(g) | geG, o(g) = h}
= @(rA)(h),

and then

¢ 2)(h1)2p 14) h). (15)
Let hlf thH and gll gZEG with (P(gl) = hl and (p(gz) = hz. Then

p(Wa)(hihy)=sup{wa(g182) | 1= ¢(h1), g2 =p(h2)}

>sup{min{wa g1),wa g2)} | g1=¢(hy1), g2 = p(hy)}

= min{sup{w(g1) | g1=¢ (h1)},sup{wa(g2) Ig2 =p(hy)}}
=min{p wa) hy), ¢ wa) hy)},

and so

@ wa) hihy)>min{e wa) hy), ¢ wa) hy)}. (16)



Let g€G and heH such that ¢(g)=h. Then

e(wa)(h)=sup{wa(g™) g €G, p(gh)=h") m-
> sup{wa(g) | g™ €Go™(g)=h"} PP e P
= sup{wa(g) | €G, 9(g) = hi= p(w)(h),

then 108
¢ wa) hiho)>min{p wa) h), ¢ wa) hy)}. 17)

et h;, hyeH and gy, g,€G with ¢(g;) = h; and ¢(g,) = h,. Then
p(ra)(hihy)=inf{r o(g1g2) | g1= @(hy), g2 =p(hy)}
<inf{T(ra(g1), ra(g2)) | g1=¢(h1), g2 = @(hy)}
=S(inf{r a(g1) | g1 = (h1)}inf{ra(g>) Ig2 =p(ho)})
=S(p(ra)(hi), (ra)(ho)),

then

¢ wa) hihy)>min{p wa) hy), ¢ wa) ho)}. (18)
Let h;, h,eH and g;, g,€G with ¢@(g;) = h; and ¢(g,) = h,. Then

p(ra)(hihy)=inf{ro(g1g2) | g1= @(h1), g2 =p(hy)}
<inflT(ra(g1), 1a(g2) | g1=p(h1), g2 = @(hy)}
=S(inf{ro(g1) | g1 = (h1)}inf{rA(g>) Ig> =p(ho)})
=S(p(ra)(h1), (ra)(hy)),

and so

¢ wa) hihy)>min{e wa) hy), @ wa) hy)). (19)
Let €G and heH such that ¢(g)=h. Then

p(ra)(h)=infira(g™) g™ € G, @(g™)=h")
<inf{ra(g) | g €G,97(g)=h"}

=inf{ro(g) | g€G, ¢(g) = h}

=0(ra)(h),

and then

¢ ra)(h1)<p ra) h). 20)
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Let h;, h,eH and g4, g,€G with ¢(g;) = h; and ¢(g,) = h,. Then
p(wa)(hihy)=inf{w A(g182) | g1= ¢(h1), g2 =¢(hy)}
<infimax{wa g1),wa 22)} | g1=¢p(hy1), g2 = @(hy)}
= max{inf{w o(g1) | g1=¢ (h1)},inf{w A(g>) | g2 =p(ho)}}
=max{Q wa) hy), @ wp) hy)},

and so

¢ wa) hihy)<max{p wa) hy), ¢ wa) hy)}. 3]
Let g€G and heH such that ¢(g)=h. Then

e(wa)(hh=inflwa(g ™) g™ € G, @(g™7)=h"}

<infiwa(g) | g7 €Go™(g)=h"}

= inf{w A(g) | g€G, ©(g) = h}
=p(wa)bh),

then

o wa)h')<p wa) h. @2
Therefore from Egs. (14)-(22) we get that ¢ (A)eICFN(H).



Proposition 11. Let H be a group and B= up, 9g)€IFCN H) and ¢ :G —H is a group homomorphism.

”’- Then ¢ B)IFCN G).

b Puzzy. Be. Appl Proof: Let B= ug, 95)€IFCN H) such that ug=rze™ and 95 x)=rge!"8 and ¢! B)=(¢’! (rB)e“(/’rl(WB) ),
HB, VB H 4 '
-1 ol
109 p(rple (WB))). Let g1,82€G. Then

e (r)(g182) = TB(9(g182))

= 15(P(81)¢(82)) 23)
> T(rp(p(g1)), tB(9(82))

=T(p™ (rp)(g1), ¢ (rB)(g2)),

and so ¢ rp) g182)2T ((P_l rp) g1), ¢ rp) gz))-

¢ (rp)(g182)=TB(P(8182))
=r(P(g1)P(g2))

‘g <T(rp(p(g1)), ra(9(82))) 24
=]
c =T(e™ (rp)(g1), ¢ (rp)(g2)),
2
and so ¢ rp) 8182)<S(¢™ 1p) 81), ¢ 18) 82)-
=
4 o7 (Wr)(8182) = W(P(8182)
g = wa(P(81)¢(82) 25)
-%D > min{WB((P g1)), WB((P gz))}
g5 = min{e™ wp) g1), ¢ wp) 82)}
g and so ¢ wp) g;82)>minfe™ wg) g;), o wp) g2)}
>
§ @ (W) (g,8,) = Wi(((g,3,))
2 - W (plg)@(,) N
:,8_, < maz{wy ((p(gl)) , Wg ((p(gQ)) } 2
E - maxt () (g, 07 (i) (2,))
so o wp) gig2)<max{p™ wpg) g1), 97 wg) g2)).
rB>( s (0(g)) =ro(o ©)2rs(0 8)=0" 10) ®) @
ro)g")=ro 0(51) =rolo" &)<rolo &)=0 ro) &) &
¢! wB>(g 1)=w ( (8" )) =wp(¢™ 8)2ws(p 8)=¢" wp) g), (29)
¢ wp)(g) =w ( (g )) =wp(e? 8))<wi(e ))=¢™ wg) g)- (30)

Let geG.
Thus Fgs. (23)-(30) give us that ¢ (B)eICFN(G).

Proposition 12. Let A= p,, 94)eNIFCN G) and H be a group. Suppose thatp:G—H is a
homomorphism. Then ¢(A)eNIFCN(H).



Proof: Using Proposition 10, we give that ¢(A)EIFCN(H). Let x, yeH such that ¢(u)=x and ¢ (w)=y with

u, weG. Then ”’-

P(ra(xyx™))=sup{ra(w) | weG, p(w)= xyx™}
=sup{ra(w) | WeG, p(w)=p(wew)p(u™))
=sup{ra(w) | w € G, p(w) = p(uwu™1)} 31) 110
=supfra(uwu?l) |w € G, p(uwu)=y}

=supfra(w) | w € G, p(w)=y}

=@ (ra(y)),

09 (ralxyx?)) =p(ea )

P(wa(xyxT))=sup{w (W) | WeG, p(w)= xyx}

=sup{w a(w) | WEG, p(w)=p(w)p(wW)p(u™)}

=sup{w o(w) | w € G, p(w) = p(uwu )} (32)
=sup{w(uwul) |w € G, p(uwu )=y}

=sup{wa(w) | w € G, p(w)=y}

:(P<WA(Y))/

then (p(wA(xyx'l)) =g0(wA y))

1 Fuzzy. Exi. Appl

@ (ra(xyx1))=inf{r ,(w) | WEG, p(w)= xyx!}
=inf{r,(w) | WeG, p(w)=p()p(w)p(u™)}
=inf{rp(w) | W € G, p(w) = p(uwu™)}
=inf{r,(uwu?) | w € G, p(uwu )=y}
=inf{ra(w) | w € G, p(w)=y}

=o(ra(y)),

then (73 Gox") )= (710

P(wA(xyx1))=inf{w s (W) | WG, o(w)= xyx 1}
=inf{w A (W) | WEG, p(W)=p(u)p(w)p(u™)}
=inf{w(w) | w € G, p(w) = p(uwu 1)}

33)
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(34
=inf{w o(uwu?) | w € G, p(uwu )=y}

=inf{w(w) | w € G, p(w)=y}
=p(wWa(y)),

then (p(wA xyx’l)):(p(wA y))

Thus for all x, yeH and from Egs. (37)-(34) we get that

PA)xyx)=(@(Ha) xyx™), e(8a) (xyx™)
=((ra)(xyx))e AR o1, )(xyx1)el#WalTD)
=(@(ra)(¥))ePAD), o(r 5 )(y)e P (WaNY))

=(@(pa)y), e(Pa)(y))

=p(A)y),
Then ¢@(A)eNICFEN(H).

Proposition 13. Let H be a commutative group and B= up, 9g)eNIFCN(H). If ¢ :G —H be a group
homomorphism, then ¢ (B)eNIFCN(G).

Proof: From Proposition 11, we get that ¢! B)EIFCN G). Let x, y€G then



@ (rp)(xyx)=rp(@(xyx™))
] | =PI ()P (x )
| =rp(@()P(y)™ () (35)
J. Fuzzy. Ext. Appl :rB((p(y))
= (rp)(y),
m and thus @ rB)(xyx'l): o1 rp) y).
@ (wp)xyx™) = wp(p(xyx™))
=w(@(JP(y)p(x ™))
=w(@)P ()™ (x) (36)
=wp(p(y))
= (W)(y),
so g1 WB)(xyx'l):gD'I wpg) ).

@ (rp)(xyx™) = rp(@(xyx™))

=1p(@()P(y)p(x™))

= 1p(P()P(y)p™ (X)) (37)
=1p(p(y))

= (P-l (rB>(Y>r

then ¢ FB)(XYX_I):(P_I rp) ¥).

¢ (wp)(xyx™) = wp(@(xyx™))
=we(@()P(Y)P(x™))
= wa(@(Py)p™ () (39)
= wa(@(y))
= (Wp)(y)-
thus WB)(XYX'1)=(p'1 wpg) y). Therefore Egs. (35)-(38) give us that

@™ (rp)(xyx™) = rp(e(xyx™))
=rp(@()Py)p(x™))

= 1p(P()P¥)p™ (%))
=rp(p(y))

= (P-l(rB)(Y)r
Thus ¢ (B)eNIFCN(G).

Intuitionistic fuzzy complex subgroups with respect to norms (t,s)

Proposition 14. Let A= u,, 9,)€IFCN(G) and B= ug, 9)€IFCN(G) such that ACB.
If ¢ :G—H is a group homomorphism, then ¢(A)Ce(B).

Proof: Let A= u,, 94)€IFCN G) and B= up, 9p)€EIFCN G) such that s =rye™4 and 9, x)=r,e™™4 and

pp=rge™® and S x)= rze™B. Using Proposition 10. we will have that

¢ A)= 01a), PBA))=((ra)e ™), p(r)e’4))eICFN H),
And

¢ B)= o(up), 9(3p))=(p(rp)e'?™), ¢(rp)e!?™*s)))e ICEN H).

Let x, yeH and u, veG then



P (ra)(xyx)=suplra(z) | 2€G, p(z)=xyxl) | |

=sup{rs(uvu™) | u, veG, ¢(u) x, ¢(v)=y}

>sup(T(rA(Y), ra(w) | p(u) X, p(v)=y) 6y e
=T(suplra(v) | y=p(¥)} suplra(w) | x=p () 1
=T(P(rA)Y), 9(r5)(0),

and so @ rA)(xyx'l)zT((p ra) y), ¢ rp) x)).

ew A)(xyx'l)zsup{w A(z) | zeG, (p(z)zxyx'l}

=sup{w(uvu 1 u, veG, o(u) x, p(v)=y}

>sup{min{w v), wg W} | @(u) x, ¢(v)=y} (40)
=min{sup{w A(v) | y=¢(v)},sup{wp(u) | x=p(u)}}

=min{p wa) y), ¢ wg) x)},

and so ¢ WA)(XYX'J)Zmin{(P wa) V), ¢ wg) x)},

@(ra)(xyx1)=sup{ra(z) | zeG, p(z)=xyx}
=inf{rp(uvu™) | u, veG, @(u) x, p(v)=y}
<inf{S(ra(v), r(w)) | (1) x, p(v)=y} 1)
=S(inf{rA(v) | y=@(v)},inf{rg(u) | x=¢(u)})
=5(p(ra)(y), ¢(rp)(x)),
thus @ 1,)(xyx™)<S(@(EA) ), PrR)(X).

(p(wA)(xyx'l)zinf{wA(z) | zeG, @(z)=xyx 1)

=inf{w p(uvu™) | u, veG, ¢(u) x, p(v)=y}

<infilmax{w, v), wg W} | @(u) x, (v)=y} 42)
=max{inf{w  (v) | y=0(v)},inf{wp(u) | x=(u)}}

= max{e wWa) y), ¢ Wp) X)},
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and so ¢ w)(xyx)smaxlp w,) y), ¢ W) X))

Thus using Egs. (39)-(42) we will have that p(A)Ce(B).

Proposition 15. Let A= 4, 94)eIFCN(H) and B= ug, 9)€IFCN(H) such that ACB.
If ¢ :G—H is a group homomorphism, then ¢ (A)Ce™(B).

Proof: Let A= (UA/ SA)EIFCN H) and B= Hp, SB)GIFCN H) such that [UA: rAeiWA and SA X)=rAeiWA

and pp=rge? and 95(x)= rigei“}"’. Using Proposition 11. we will have that

o1 A)=(p(1a), 97 (94))= (@ (a)e™ VM), @ (x4)e?” ) €ICEN G).
And

i 1 W - 10 (w
¢ B)=(¢(up), p(3p))= (9 (rp)e D), o (rp)e?” P))) € ICEN G).
Let x, y €G, then



Ji—.

I Fuzzy. Ext. Appl

113

Intuitionistic fuzzy complex subgroups with respect to norms (t,s)

@ ra)xyx™) = ralp(xyx™)
=t A(PIP ()P (x ™))
= 1A(@()e(y)p™ (%)) (43)
> T(ra(@(y)), rp(@(x)))
=T(¢ (ra)(y), ™ (rp)(X)),
Then ¢ I’A)(XYX-I)zT((PJ ry) y), ¢ rp) X))-
P WA xyx) = wa(p(xyx™))
=w A (@I (y)p(x™)
=W (@)@ ()™ (%) (44)
> min{wA((p y)), WB((p x))}
=min{e? w,) y), o™ wg) )},
thus @ WA)(xyx'l)zmin{(p'l wa) ), ¢ wg) X))

@ ra)xyxT) =ra(@(xyx™))
=rA(@()e(y)e(x™))
=1 A(@(X)P(y)p™ (X)) (45)
<S(ra(@(y)), ra(@(x)))
=S(@™ (ra)y), @ (rB)(x)),
so ¢! rA)(xyx'J)SS((p'l ra) ), ¢ rp) x))

@ (W o) (xyx)=w A (p(xyx ™))

=wA(@P)P(Y)p(x™))

=W A(@()P(y)9™ (X)) 4o
gmax{wA((p y)), WB((P X))}

=max{p? w,p) y), 01 wg) x)},

thus ¢ WA)(xyx'l)Smax{(p'I wa) y), ¢ wp) x)}.

Thus Egs. (43)-(46) give us that ¢ (A)Ce™(B).

7 | Conclusion and Open Problem

In this study, intuitionistic fuzzy complex subgroups with respect to t-norm T and s-norm sare defined
and investigated some properties of them. Later, the inverse, composition, intersection and normality of
them are introduced and we proved some basic new results and present some properties of them. Now
one can investigate intuitionistic fuzzy complex submodules with respect to t-norm T and s-norm S as we

did and this can be an open problem. We would like to thank the reviewers for carefully reading the
manuscript and making several helpful comments to increase the quality of the paper.
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Abstract

Picture Fuzzy Sets (PESs) are expanded to include Intuitionistic Fuzzy Sets (IFSs), with the extra advantage of avoiding
underlying limitations. PFS based models may be adequate in situations when we face opinions involving more answer
of types: yes, abstain and no. In this paper, the concepts of semi-prime ideals of PES are explained. We also discussed
how to construct picture fuzzy regular and intra-regular ideals and represents certain fundamental facts.

Keywords: Intuitionistic fuzzy set, Picture fuzzy set, Picture fuzzy ideals, Picture fuzzy semi-prime ideals, Picture fuzzy
regular ideals.

1 | Introduction

@@Licensee Journal Zadeh [21] developed the fuzzy set methodology, that assigns a number from the unit range [0, 1] to

of Fuzzy Extension and each element of the discursive multiverse to indicate the degree of sense of belonging to the set under

Applications. This consideration using a degree of membership 1. Fuzzy sets are a subset of set theory that allows for

article is an open access states halfway between entire and nothing. A membership function is employed in a fuzzy set to

article distributed under | o regent the extent to which an element belongs to a class. The membership value can be anything

the terms and conditions . T . AT, ..
. between 0 and 1, with O indicating that the element is not a member of a class, 1 indicating that it is,
of the Creative Commons
Attribution (CC BY)
license

(http://creativecommons. | domains since Zadeh’s seminal work, including artificial intelligence, management sciences,

and other values indicating the degree of membership. The membership function in fuzzy sets
replaced the characteristic function in crisp sets. Fuzzy set theory has been applied to a variety of

org/licenses/by/4.0). engineering, mathematics, statistics, signal processing, automata theory, social sciences, medical
sciences, and biological sciences.

Because of the absence of nonmembership functions and the disregard for the potential of hesitation
margin, the idea of fuzzy sets theory appears to be inconclusive. Atanassov [9] examined these flaws
and created the concept of Intuitionistic Fuzzy Sets (IFSs) to address them. The construct (that is
IFSs) combines the membership function, with the nonmembership function, v, and the hesitation

margin, 7t (that is neither membership nor nonmembership functions), resulting in pg+v <1 and
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u+v+1<1.1FSs give a versatile framework for elaborating uncertainty and ambiguity. IFS overcomes

the defects of fuzzy set and can deal with fuzzy, uncertainty and incomplete information. There are lots
work done in the field of IFSs [1], [2], [5], [11]-

Although IFS has been successfully applied in many domains, it cannot handle inconsistent information
in real life. Such as voting questions, all voting results can be divided into four groups that are “vote
for”, “abstain”, “vote against” and “refuse to vote”. In order to solve this type of issue, Picture Fuzzy
Set (PFS) was proposed by Cuong [23]. PES consists of three functions: positive membership function,
neutral membership function and negative membership function. The PES solved the voting problem

successfully, and is applied to clustering, fuzzy inference, and decision-making.

Algebraic structures ate important in mathematics. The concept of intuitionistic fuzzification of various
semigroup ideals was introduced by Jun et al. [12]-[14]. Kim and Lee [15] gave the notion of intuitionistic
fuzzy bi-ideals of semigroups. Manna et al. [3] have discussed on R-subgroup of near-rings. Adak et al.
[4], [6]-]8], [22] present some results on pythagorean fuzzy ideal and Q-fuzzy ideals of near rings. Biswas
[10] gives some properties of fuzzy subgroups. Yun [20] discussed on fuzzy ideal of ordered semi-group.
Sardar et al. [18] gave the concept of intuitionistic fuzzy prime ideals, semi-prime ideals and also
intuitionistic fuzzy ideal extension in a I" -semigroup in [16], [17], [19].

In this paper, we introduce the notion of picture fuzzy subsemigroup, picture fuzzy left and right ideals
of ordered semigroup. Also, we define picture fuzzy semi-prime ideals and picture fuzzy prime ideals.
We investigate some important results picture fuzzysemi-prime ideals. The concepts of picture fuzzy
left regular ideal and picture fuzzy right ideals are presented. Also, discussed important properties of
these regular ideals.

The remainder of the paper is laid out as follows: preliminaries and definitions such as ordered set,
ordered subgroups, IFSs, and PFSs are given in Section 2. In Section 3, we introduced some aspects of

picture fuzzy prime ideals and semi-prime ideals as well as some of the important properties of picture
fuzzy prime ideals. Section 4 concludes with a conclusion.

2 | Preliminaries and Definitions

We will review the related concepts of fuzzy sets, IFSs, and PESs in this section. The definition of
oredered set, ordered semigroup, prime ideal, semi-prime ideal are represented.

Definition 1 (Ordered Semigroup). A non empty set M is called an ordered semigroup if it is both an

ordered set and a semigroup that meets the following criteria:
a<b= xa<xb and ax<bx forall a,b,x € M.

Definition 2. Consider(M,.,<)be an ordered semigroup. A non-empty subset G of M is called a

subsemigroup of M if G* = G.

Definition 3. Let P be a subset of an ordered semigroup M, that isn’t empty. Then P is called a left
(resp. right) ideal of M if it satisfies:

1. MP c P (tesp. PM c P).
II. (forallpeP)(forallgeM),(g<p=qeP).

P will be ideal of M if it is both left and right ideal of M.
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Definition 4. Let (M, .,<) be an ordered semigroup and N be a non-empty subset of M. Then N is
called prime if pge N=peN or geN forall p,ge M.

Let N be an ideal of M, ,if N is prime subset of M, then N is called prime ideal.

Definition 5. Let (M,.,<) be an ordered semigroup and N be a non-empty subset of M. Then N is

called semi-prime if p?’ e N= peN forall pe M.Let N beanideal of M.If N is a semi-prime subset
of M, then N is called semi-prime ideal.

Definition 6. A fuzzy set F in a universal set X is defined as
F={<x,uu(x)>xeX},

where p, : X — [0,1] is a mapping that is known as the fuzzy set’s membership function.

The complement of u is defined by f(x)=1-pu(x) forall x e X and denoted by .

Definition 7. Let (M,.,<)be an ordered semigroup. A fuzzy subset y of M is called a fuzzy ideal of

M, , if the following axioms ate satisfied:

I If p<q then u(p)=u(q).
II.  wu(pq)=max{u(p) u(q)} forall (p.q)e M.

Definition 8. Let X be a fixed set. An IFS A in X is an expression having the form

A={<x,p, (x),w,(x)>xeX]},

where the a,(x) is the memebership grade and f,(x) is the non-membership grade of the element

x e X respectively.

Also u, : X - [0,1], w, : X = [0,1] and satisfy the condition 0<u,(x)+w,(x)<1 forall xe X.
The degree of indeterminacy is h, (x)=1-u,(x)-w,(x).

Definition 9. Let A=(u,,v,,w,)be a PFS in M.Then A=(u,,v,,w,) is called picture fuzzy

subsemigroup of M if it satisfies the following axioms:

1. uA(pq)Zmin{uA(p),uA(q)}.
1. v,(pg)<max{v,(p)v,(q)
L. w,(pg)<max{w,(p)w (q)} forallp,qe M.

Definition 10. A PFS A=(u,,v,,w,) in M is said to be picture fuzzy left ideal of M if following

axioms are satisfied:

I. p<q implies u,(p)=u,(q) and u,(pq)=u,(q)
1. p<q implies v,(p)<v,(q) and v,(p)<Vv,(q).
HI. p<gqgimpliesw,(p)<w,(q) and w,(pq)<w,(q) forallp,q e M.



Definition 11. A PFS A=(u,,v,,w,) in M is said to be picture fuzzy right ideal of M if following

axioms are satisfied:

I. p<gq implies u,(p)>u,(q)and u,(pq)=u,(p)
II. p<q implies v,(p)<v,(p)and v,(pq)<v,(q).
I. p<gq implies w,(p)<w,(p)and w,(pq)<w,(q) forallp,q e M.

APFS A=(u,,v,,w,) is called a picture fuzzy ideal of M if it is left ideal as well as right ideal.

3 | Some Results on Picture Fuzzy Semi-Prime Ideals

This section introduces the notion of picture fuzzy prime ideal, picture fuzzy semi-prime ideal, picture
fuzzy regular ideals and picture fuzzy intra-regular ideals of ordered semigroups. Also, prove some
important results utilizing characteristic function of a non-empty subset of ordered semigroups.

Definition 12. A fuzzy subset u of M is called prime, if

H(pq) =max{u(p),u(q)} for all p,g e M,

where (M,.<) be an ordered semigroup.

A fuzzy ideal u of M is called a fuzzy prime ideal of M if u is a prime fuzzy subset of M.

Definition 13. Let A=(u,,v,,w,) be a PFS in M. Then A=(u,,v,,w,) is called picture fuzzy

prime of M if it satisfies the following axioms:

L u,(pq)=max{u,(p)u,(q)
1I. Va(pq):min{VA(p),vA(q)}.
1. w,(pq)=min{w (p),w,(q)} forallp,qeM.

Definition 14. Let us consider p be a fuzzy subset of an ordered semigroup M. If u(p)=> u(p®) for
all pe M, then is called semi-prime. A fuzzy ideal y of M is called a fuzzy semi-prime ideal of M
if pis a fuzzy semi-prime subset of M.

Definition 15. Let A=(u,,v,,w,) be a PFS inM . Then A=(u,,v,,w,)is called picture fuzzy

semi-prime of M if following criterias are satisfied:

L u,(p)zu,(p’)
IL v (p)<v,(p°).
1L w,(p)<w,(p®) forallpe M.

Theorem 1. For any picture fuzzy subsemigroup A= (u,,v,,w,) of M ,if A=(u,,v,,w,)is picture

fuzzy semi-prime, then A(p) = A(p®) holds.

Proof: Let p be an element of M. Since u, is a fuzzy subsemigroup of M, then and so we have

u,(p)=u,(p*).
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, III- u, (p)=u,(p’) =min{u, (p),u, (p)} =u, (p),
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119 v, (p)<v,(p?)=max{v,(p),v,(pP)}=v,(p),
thusv,(p)=v,(p°).
Also, we have
w,(p)<w, (p*) =max{w, (p), w,(p)} =w,(p),

thus w,(p)=w,(p*).
This proves the theorem. ]

Definition 16. An ordered semigroup M is called left (resp. right) regular if, for each element a of M,

there exists an element x in M such that a < xa’(resp.a<a’x).

Theorem 2. Let M be left regular. Then, for every picture fuzzy left ideal A=(u,,v,,w,)of M,
P(p)=P(p’)holds for all p e M.

Picture Fuzzy Semi-prime Ideals

Proof: Let p be any element of M . Since M is left regular, there exists an element x in M such that

p<xp’.
Thus we have

u,(p)=u, (xp’)=u,(p’)2u,(p),

and so we have
u, (p)=u,(p*).
Again
v, (p)< v, (xp*) < v, (p*)<v,(p)
thus
VA(p) = VA(sz).
Also, we have
W, (p)<w, (xp*)<w, (p*)<w,(p),
thus
W, (p)=w, (xp°),
so, P(p)=P(p°).
This completes the proof. U

Theorem 3. Let M be left regular. Then, every picture fuzzy leftideal of M is picture fuzzy semi-prime.

Proof: Let A=(u,,v,,w,) be a picture fuzzy left ideal of M and let pe M. Then, there exists an

element x in M such that p < xp® since M is left regular. So, we have



u,(p)=u, (xp’)=u,(p’),

v,(p) SVA(XPZ) SVA(pz),
and

w,(p)< wA(xpz) SWA(pZ).
This completes the proof. O

Definition 17. An ordered semigroup M is called intra-regular if, for each element p of M, there exist

clements x and y in M such that p<xp’y.

Definition 18. Let A=(u,,v,,w,) beaPFSin M. Then A=(u,,v,,w,) is called a picture fuzzy

interior ideal of M if it satisfies axioms:

I x<y implies u,(x)>u,(y) and u,(xsy)=u,(s).
1. x<y implies v,(x)<v,(y) and v,(xsy)<v ,(s).

II. x <y implies w,(x)<w _(y) and w_(xsy)<w ,(s) forallx,y € M.

Theorem 4. Let A=(u,,v,,w,)be a PES in an intra-regular ordered semigroup M. Then,

A=(u,,v,,w,) is a picture fuzzy interior ideal of M if and only if A=(u,,v,,w,) is an picture
fuzzy ideal of M.

Proof: Let p,q be any elements of M, and let A=(u,,v,,w,) be a picture fuzzy intetior ideal of
M.

Then, since M is intra-regular, there exist elements X, y, p and in M such that g <uq’v. Then, since

u, is a fuzzy intetior ideal of M, we have

u, (pg) = u, (xp’y)q) =u, (xp)p(yq) = u, (p),

and

u, (pq) = u, (p(xq’y)) =u, (PX)q(qy)) = u, (q).
Again
v, (P 2 v, (xp’y)q) = v, (xp)P(yq) = v, (p),

and

v, (pq) = v, (p(Xq’y)) = v, (PX)q(qy)) = v, (-

Also, we have

w, (P9 = w, (xp’y)q) =W, (xp)P(yq) = W, (p),

and
W, (p9) 2w, (P(xq’y)) =W, (PX)q(qy)) = W, (q)-

On the other hand, let A=(u,,v,,w,) be a picture fuzzy ideal of M . Then, since u, is a fuzzy ideal
of M, we have
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u_(xpy) =u,(x(py))=u,(py)=u,(p),

v, (xpy)=v,(x(py)) < v, (py)<v,(p),
and

w, (xpy) =w, (X(py)) <w, (py)<w,(p)-
Forall x,a and ye M.

This completes the proof. [

Theorem 5. Let A=(u,,v,,w,) be a picture fuzzy ideal of M. If M is intra-regular,then

A=(u,,v,,w,) is picture fuzzy semi-prime.

Proof: Let p be any element of M . Then since M is intra-regular, there exist x and y in M such that

p<xp’y. So, we have
u, (p)2u, (xp’y)>u, (py) 2 u, (p°),
v, (P) <V, (p°Y) <V, (PY) SV, (P),
and
W, (P)<w, (xpy) <w, (p’y) < w, (p°).

This proves the theorem. [

Theotem 6. Let A=(u,,v,,w,) be a picture fuzzy intetior ideal of M. If M is an intra-regular, then

A=(u,,v,,w,)is apicture fuzzy semi-ptime.

Proof: Let p be any element of M. Then since M is intra-regular, there exist x and y in M such that
p<xp’y.

u,(p)=u, (p°y) 2 u, (p°),

VA (P) <V, (P%Y) <V, (PTY) <V, (%),
and

W, (P) W, (xp'y) S w, (p’y) S W, (p).

This proves the theorem. [

Theorem 7. Let M be intra-regular. Then, for all picture fuzzy intetior ideal A=(u,,v,,w,) and for

alpe M, A(p)=A(p’) holds.

Proof: Let p be any element of M . Then since M is intra-regular, there exist x and y in M such that

p<xp’y. So, we have

u, (p)2u, (xp’y)2u, (p*) 2 u (xp’y)(xp’y)) =u, (xp)p(yxp’y) 2 u, (p)),
VA (P) <V, P’y 2V, (p*) 2V, (p°Y)(p’Y)) = v, (P)P(yXp°y) <V, (P)),
and

w,(p)<w, (xp’y) 2w, (p*) 2w, (xp’y)(xp’y)) =w,, (xp)p(yxp°y) < W, (P)).



So, we have A(p) = A(p*).
This completes the proof. U

Theorem 8. Let M be intra-regular. Then, for all picture fuzzy interior ideal A=(u,,v,,w,) and

forallp,ge M, A(pq)=A(qp) holds.

Proof: Let p be any element of M . Then since M is intra-regular, there exist x and y in M such that
p<xp’y. So, we have
u, (pq) =u, (Pg)*) =u, (p(qp)q) = u, (qp) =u, (qp)*) = u, (q(PY)P) 2 u, (Pg),
v, (P9 =V, (p9)*) =V, (P(qP)q) < v, (qp) = v, ((ap)*) = v, (q(PY)P) < v, (Pq),
and
w, (pq) =w, ((pq)*) =w, (p(ap)q) < w, (qp) =W, ((qp)*) = W, (q(Pg)p) < W, (pq).
So, we have P(pq) = P(qp).

This proves the theorem. O

Definition 19. An ordered semigroup M is called archimedean if, for any elements p,q there exists a

positive integer n such that p*> e M q M.

Theorem 9. Suppose M be an ordered archimedean semigroup. Then, each picture fuzzy semi-prime
fuzzy ideal of M is a constant function.

Proof: Let A=(u,,v,,w,) be any picture fuzzy semi-prime fuzzy ideal of M and p,qe M. Then

since M is archimedean, there exist x and y in M such that p" = xqy for some integer n.

Then, we have

u, (p)= u, (pn) = uA(qu) 2 uA(q)l

and

u,(q)=u,(q")=u,(xpy)=u,(p),
and

v, (p)=v,(p")=v,(xqy)<v,(q),
and

v, (@) =Vv,(q")=v,(xpy)<V,(p)

also, we have

w,(p)=w,(p")=w,(xqy)<w,(q),
and
w,(qQ)=w,(q")=w, (xpy)<w,(p)

Therefore, we have
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P(p)=P(q), forall p,qe M.

This proves the theorem. O

4 | Conclusion

The PFES is an effective expansion of the IFS for dealing with knowledge uncertainty. In this context, we
present the concepts of picture fuzzy prime ideals and semi-prime ideals of ordered semigroups in this
study. Several of its appealing characteristics have also been studied. We also explore various findings on
picture fuzzy regular ideals and intraregular ideals of ordered semigroups, along with promote the
implementation of picture fuzzy regular ideals.

We'll look into the decision-making process more in the future. Interval-valued PFSs are being used to
solve difficulties with uncertain data. An investigation of the interval-valued picture fuzzy will be
conducted oredered semigroups, near-rings and interval-valued picture prime and semi-prime ideals, as
well as their algebraic features.
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conorm functions. The paper examines the extensions of fuzzy subgroups, specifically "Pythagorean Fuzzy Subgroups
(PESG)" and "FESG", along with their properties. In the existing literatute on Pythagorean and FFSG, the standard
propetties for membership and non-membership functions ate based on the "min" and "max" operations, respectively.
However, in this wotk, we develop a theory that utilizes the .7 -norm for "min" and the .%’-conorm for "max", providing
definitions of Pythagorean and FFSG with these functions, along with relevant examples. By incorporating this approach,
we introduce multiple options for selecting the minimum and maximum values. Additionally, we prove several results
related to Pythagorean and FFSG using the .7 -norm and .%-conorm, and discuss important properties associated with
them.

Keywords: Fuzzy sets, Pythagorean fuzzy subgroups, Fermatean fuzzy subgroups, .7 -Norm, .-Conorm.
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[5] proposed Intuitionistic Fuzzy Sets (IFSs), further refining the concept of fuzzy sets. Around the
same time, Das [0] introduced the notion of fuzzy groups and level subgroups, paving a new direction
for fuzzy set theory. Ajmal and Prajapati [7] and Ajmal and Thomas [8] contributed significantly to the
evolution of this field. Their introduction of fuzzy cosets, fuzzy normal subgroups, and the lattice
structure of these subgroups provided a fresh perspective on the structure of fuzzy groups. Adding
complexity to fuzzy set theory, Dixit et al. [9] delved into level subgroups and the union of fuzzy
subgroups. Complementing this work, Gau and Buehrer [10] presented vague sets, adding a new
dimension to the understanding of fuzziness. Fast forwarding to the new millennium, Khan et al. [11]
brought the vague sets concept into the fold of groups, contributing to the formation of vague groups.
Yager [12] then stretched the boundaries of classical fuzzy set theory with the introduction of
Pythagorean fuzzy sets. Rasuli [13—15] expanded the application of IFSs to intuitionistic fuzzy subgroups
with respect to norms and introduced fuzzy equivalence relation, fuzzy congruence relation, and fuzzy
normal subgroups on group G over t-norms.

Simultaneously, the 21t century has seen the advent of innovative fuzzy set categories. Gayen et al. [16]
proposed the interval-valued neutrosophic subgroup based on interval-valued triple t-norm, while
Senapati and Yager [17] introduced Fermatean fuzzy sets. In a similar vein, Bejines et al. [18] and
Ardanza-Trevijano et al. [19] explored the aggregation of fuzzy and T-subgroups respectively. Kumar et
al. [20] redefined vague groups with respect to t-norms, while Bhunia et al. [21] and Razaq et al. [22]
investigated the characterization of Pythagorean Fuzzy Subgroups (PFSG) and normal subgroups.
Adding to the complexity of the fuzzy logic framework, Boixader and Recasens [23] presented the
concepts of vague and fuzzy t-norms and t-conorms. Moreover, Silambarasan [24] applied the
Fermatean fuzzy sets concept to subgroups, leading to the exploration of Fermatean Fuzzy Subgroups

(FFSG).

These works demonstrate the application of fuzzy logic and its extensions in the realm of crisp abstract
algebra, equipping researchers with powerful tools to address uncertainty in group theory and related
fields. The 7 -norm function, serving as a key component, can be defined in various ways, including
standard intersection, algebraic product, bounded difference, and drastic intersection. Similarly, the -
conorm function, another crucial element, offers multiple definitions, such as standard union, algebraic
sum, bounded sum, and drastic union. In this paper, we take a significant step by replacing the traditional
"minimum" and "maximum" properties in the definitions of Pythagorean and FFSG, respectively, with
the 7 -norm and .%’-conorm functions. By doing so, we establish a novel framework and explore its
implications. Furthermore, we provide proof for several propositions associated with these modified
definitions, deepening our understanding of Pythagorean and FFSG in the context of the .7 -norm and

% -conorm functions.

This research paper is structured into six sections, each contributing to the exploration of Pythagorean
and FFSG. Section 1 serves as an introduction, providing an overview of previous work in the field. It
establishes the foundation upon which our research builds. In Section 2, we present the definitions of
key notions and concepts that underpin our study. These fundamental definitions lay the groundwork
for our subsequent analyses. Section 3 focuses on the core definitions, delving into the specifics of
PFSG. We establish their formal definitions, employing the .7 norm and .%’-conorm functions. Moving
forward, Section 4 unveils significant findings derived from our exploration of PFSG. We present and
discuss the outcomes, shedding light on their implications. Section 5 introduces the Fermatean fuzzy
subgroup, defined in relation to the 7 -norm and .%-conorm functions. Additionally, we provide a
collection of results that are closely associated with this new concept. Finally, the research paper
concludes in the sixth section, summarizing our findings and providing insights into the significance of
our contributions.
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2 | Notations

R = non — empty set.

Ry = Fuzzy set.

+= binary operation defined on set R.

(R,*) = A group equipped with binary operation *.
3 | Preliminaries

3.1 | Fuzzy Set

Assume that R is a set that is not void. A fuzzy set Ry of R is described as Ry = {(v, VR v)) S R}. Where

VR is a membership function defined as VR R —[01] forallveR.
3.2 | Fuzzy Subgroup

Suppose (R,*) be a group. If a fuzzy set Rf of (R,*) satisfies the requirements listed below, then R is a
fuzzy subgroup.

Loyr, vy *0p) > min (ny v1), VR, vz)) forallvy,v, €R.

. g, (07 2 vz, (9) forallv €R.
Where yg ;s a membership function defined as g SR = [01] forallv e R.

3.3 | Intuitionistic Fuzzy Set

A definition of IFS ﬁif of a non-void set R is ﬁzf = {(U,yﬁf ), Sﬁzf v)):ve R}. Where ViR is a
membership function defined as 7/17<f: R — [0,1] and where 9 Ry is a non-membership function defined as
Sﬁzf:R — [0,1] forallveR. Also, 0< ViR v) + Sﬁzf v) <1 and the degree of hesitation is given by
1- ViR, v) - ‘917<f v) forallv € R.

3.4 | Intuitionistic Fuzzy Subgroup

Suppose (R,*) be a group. If IFS IR 5 of (R,*) satisfies the characteristics listed below, then ﬁ?f is an IFSG
of (R,*):

fo{f Vi * Vz) > min (Vﬁ{f Vl),yﬁ'{f Vz)) and Sﬁ{f Vi *Vz) <
max (Sﬁaf V1), Sﬁzf Vz)) forall vi,v, €R.

II.



Vﬁzf(v‘l) 2 VR, v) and S@f<v‘1) < Sﬁf v) forallv €R,

where Y1z . is a membership function defined as ymf: R—[01]and 9 R is a non-membership function

defined as Sﬁif: R — [01] forallv e R.
3.5 | Pythagorean Fuzzy Set

Let R be a non-void set. The definition of Pythagorean fuzzy set IBTQf of Ris: IBTQf =

{(v, ViR, ), SI?Rf v)):v € R}. Where ViR, is a membership function defined as yﬁf:R — [0,1] and,
2
Sﬁf is a non-membership function defined as Sﬁf:R — [0,1] forallv e R. Also, 0 < ()/ﬁ{f v)) +

2
(Sﬁf v)) <1 forallveR.

3.6 | Pythagorean Fuzzy Subgroup

If a Pythagorean fuzzy set ﬁf of group (R,*) satisfies the following criteria, it supposedly is a
Pythagorean fuzzy subgroup.

2 : 2 2 2
Vﬁﬁf Vi * Vz) > min (Yl?lif Vl)/ Vl;lif Vz)) and Sﬁ{f Vi * V2) <
2 2
max (Sﬁf V1), Sﬁf Vz)) forall vi,v, €R.

II.

V%ﬁf(V_l) > ylz;ﬁf v) and S%E(v‘l) < Slz;ﬁf v) forallv €R,

where yx ’ is a membership function defined as yy 5 R —[0,1] and Sﬁaf is a non-membership function

2 2
defined as Sﬁ{f:R — [0,1] forallv € R and 7/1237<f v) = (Vﬁ{f v)) and Slzaﬁf v) = (Sﬁ{f v)) forallv e R.

3.7 | Fermatean Fuzzy Set

Let R be a non-void set. The definition of Fermatean fuzzy set ﬁ?f of R is ﬁ?f=

{(U, VR, v), Sﬁ%f v)) (v € R}. Where ViR, is a membership function defined as ViR R — [0,1] and, S?T%f
3
is a non-membership function defined as Sﬁf:R — [01] forallveR. Also, 0< ()/ﬁ{f v)) +
3
(Sﬁ?f ZJ)) <1 forallveR.
3.8 | Fermatean Fuzzy Subgroup

If a Fermatean fuzzy set FR s of group (R,*) satisfies the following criteria, then it is Fermatean fuzzy
subgroup.
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3 : 3 3 3
Vﬁif Vv * V2) > min (Vﬁif Vl),]/ﬁif Vz)) and Sﬁif Vi * V2) <
3 3 o
max (Sﬁif Vl)/ Sﬁif V2)) for all Vi1,V € R.

II.

Vir(v7) 2 v, v and ¥ (v1) < 9% v) forallv €R,

where yg ’ is a membership function defined as yy f:R — [0,1] and Sﬁzf is a non-membership function

3 3
defined as Sﬁzf‘R — [01] forallveR and y%{f v) = (7/?T<f v)) and S‘E’TRf v) = (Sﬁzf v)) forallv e R.

3.9 | & -Norm

Definition 1. A function .7 : [0,1] X [0,1] — [0,1] is referred to as .7 - norm if “.7” meets the criteria
listed below:

. 700=09p,1)=y =91p).
. 7 o)< T p,v)if o <p'and b < 7.
. 7 (o, 7") = 7 (7, ).
V. 7,7, p)) =7 (7 (,1),p) forall’, ¥, 7', p" €R.

Some various types of .7 -norm function are as follows:

1. Standard intersection: 7~ «/, V') = min o, b’).
II.  Algebraic product: 7 o/, ') = /. b,

III. Bounded difference: .7 o', V) = max(0,a’ + b’ —1).
o, whent' =1,
IV. Drastic intersection: .7 o/, b) = {b' , when o =1,
0, otherwise.

The relation between these four are T,,;,, a’,0’) < max(0,a’ + V' —1) < o’. 0 < min «, V).
3.10 | $-Conorm

Definition 2. A function .%:[0,1] X [0,1] — [0,1] is referred to as .¥’-conorm if “.%”” meets the criteria
listed below:

. #(,0) =da.
II. ¥ < p’implies . «/,0') < .7, p').
L. A, 7v) = FA(,d).
V. A, S(t,p)) = L (F(,v),p) forall, ¥, p', 7" €R.

Some various types of .’-conorm function are as follows:

I. Standard union: . o/, V") = max o', ).
II. Algebraic sum: . o/, b) = a’ + b’ - a’D’.
III. Bounded sum: .%* a’,bv’) = min(1, o’ + b’).
o/, when?d =0,
IV. Drastic union: .7 o/, V') =<V, when o’ =0,
1, otherwise.



The relation between these four are:
max o/, by <a’ +b —a’l <minl,a’ +b) < S, @, ).

Definition 3. A fuzzy set Ry of a group (R,*) is a Fuzzy Subgroup (FSG) in terms of the t-norm “.7”

if R £ meets the criteria listed below:

L yr, o1 *Tp) > T()/Rf vl),ny vz)) forall v, v, €R.

I1. ny(v‘l) > g, ) forallv €R.

Where yg y is a membership function defined as yy 5 R — [01] forallveR.

4 | Pythagorean Fuzzy Subgroup in Context of 7-Norm and S-
Conorm

In this section, we redefine the concept of PESG within the framework of the .7 -norm and .%-conorm,
providing a fresh perspective and enhancing our understanding of this fundamental concept. We delve
into the intricate properties associated with these redefined PFSGs, shedding light on their unique
characteristics and implications.

Bhunia et al. [21] made significant contributions to the study of PFSG. His work was instrumental in
defining the concept and establishing crucial conditions for the membership and non-membership
functions. The conditions, as provided below, play a vital role in characterizing PFSG. Bhunia's work
laid the foundation for our exploration, paving the way for the redefinition and analysis of PFSGs within
the 7 -norm and %-conorm framework. By leveraging Bhunia's insights, we build upon the existing
knowledge to further deepen our understanding of PESGs and their properties.

L Vg, 01 %02) 2 min (V%f o). Vg, 02)) and Sz, 01+ ) < max (S%f o) Sor, vz))
forallt;, t; € R.
In V%ﬁf(v_l) > V%Tzf v) and ‘91251?][(7;—1) < S%Rf v) forallv €R.

In Section 2, an in-depth exploration of the .7 -norm and .%’-conorm was undertaken, highlighting their
diverse types and characteristics. Upon closer examination of the definition of a Pythagorean fuzzy
subgroup, a compelling insight emerged: the traditional "minimum" and "maximum" operations can be
effectively replaced by the 7 -norm and .%-conorm, respectively. This revelation implies that we are no
longer confined to a single option for selecting the minimum and maximum values. Harnessing this
newfound flexibility, we proceed to define the Pythagorean fuzzy subgroup, leveraging the power of the
J -norm and .%-conorm. By adopting this novel approach, we expand the possibilities and refine our
understanding of PFSG within the context of these operations.

Definition 4. Suppose R,*) be a group. A Pythagorean fuzzy set l?lif of (R,*) is a PFSG in context of

t-norm “7" and s-conorm %7 if PR satisfies the following conditions:

L szﬁzf V1 *0p) =T ()/Izgﬁf vl),ylz—,ﬁf vz)) and S%f v *0p) £ (S%Rf vy), S%f vz)) forallvy,v, €R.

II. y,%kf(ﬁ'l) > )/F%Rf(ﬁ) and 19[27;3]‘(17'1) < ﬁ,%kf(ﬁ) forall ¥ €R.
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Where VPR, is a membership function defined as ViR R — [01]and 9 PR is a non-membership function

2 2
defined as Sﬁf:R — [01] forallt€ R and y%{f v) = (7137€f v)) and Sl%f v) = (Sﬁf v)) forallv eR.

Example 1. Let z3,%) be a group of addition modulo 3 and let Pythagorean fuzzy set 1372/: of zj,%) is

P z3,>e)f ={<0,[0.8,0.5] >,<1,[0.7,0.6] >,< 2,[0.7,0.6] >}. Then P 23,*)f is a Pythagorean fuzzy subgroup

M C 7 < > —_ ;. 2 2 —_—

in context of tnorm ‘7 ’and s-conorm .¥’. Whete J =min (yﬁ{f vl),yﬁ{f vz)) and & =
2 2

max (Sﬁf v1), SﬁRf 02)).

Proposition 1. If IBTQf is a PFSG of a group (R,*) in context of t-norm 7’ and s-conorm %, then

(R,*)l ={v € (R,*) : IBTQf(U) =1lie. yfﬁ{f v)= 1and S%Rf v) = 1} is either empty or is a subgroup of

(R%).

Proof: If wvy,v,€ (R,*)lthen y%{f(vl *vz"l) > (y%{f vl),y%{f(vz"l)) =9 (y%{f vl),y%{f vz)) =
72 — 2 -1\ _1 : . -1 . 2
7 1,1) = 1. Therefore, yﬁf(vl * Uy ) =1 implies vy *v, " € (R,*)l. And if v,0, € (R,*)lthen Sﬁ{f(vl *

02’1) < (\91237{)( vy), 9%

PRf(vzl)) = (sgﬁf o), g, vz)) =7 11)=1. Therefore, 9z (v1+0,7) =1

implies vy * v, e (R,*)l.
Consequently, (R,*)1 is a subgroup of group (R,*).

Proposition 2. Let IBTQf be a PFSG of a group (R,*) in context of t-norm ‘7 ’and s-conorm 5. If
y%Rf(vl *‘02_1) =1 then szﬁf vy) = )/%{f vy), and if S%Rf(vl v«vz‘l) =1 then S%{f vy) =

S%,Ef v,) forallv e (R,*).

Proof: Consider for all vy, v, € (R,*).

Ver, 00 = Vg, (0102 )oo) 2 7(yf;,§f(v1*vz-l),y%zf Uz)) = 7(1,y§~Rf Uz)) = Vix, ) = Vi, (027
[Since IBT?f is a Pythagorean fuzzysubgroup|. Again consider, Vlzgﬁf V) = y%{f(vl(vl +0, 1)) >
T (%%zf vy), )/1237()((01 % Uz_l)) = (7125T<f Ul),l) = 7/%’7%,/ v,) = ylzaﬁf(vz_l). [Since IBTins a Pythagorean fuzzy
subgroup].

2 — 2
= )/137{1[ Ul) = yﬁ?f '02).

2 _ Q2
In the same manner, we can prove that 9 PR, V) =9 PR, V).

Proposition 3. Let PR; be a PFS of a group (R,*) in context of thet-norm ‘7 ’and s-conorm ‘5. If

Z?Rf(e) =1 ie., y%{f e)=1and S%f e)=1 and ylzgif(vl * vz"l) >

T ()/%{f v1), szﬁaf 02)) forall vl,vzin(R,*) and Sl%f(vl *02‘1) <



S (S%f v1), S%{f vz)) forallvy, Uzii’l(R,*). Then ﬁf is a PFSG of group (R,»e) in context of t-norm ‘7’

and s-conorm %,

Proof: Consider, forall v,v, € (R,*), y%{f(v‘l) = y%{f(ev“l) > (%Zﬁf e), )/%{f v)) =
T (1,7/1%1( v)) = yzzﬁaf(v)' And similatly, y%{f(v) > yl%f(v‘l) so that 7/127zf v) = yl%f(v‘l). Moreover,

Vi, 010002 Vi (o v0s™) 2 7 (v, o (7)) = 7 (v, o0, w0 Ths o s

PFSG of group (R,*) in context of t-norm 7.

Likewise, we can demonstrate ‘91251'zf is a PFSG of group (R,*) in context of s-conorm “.%”. Consequently,

PR £ is a PESG of group (R,*) in context of t-norm ‘.7 ’and s-conorm ‘.5,

5 | Fermatean Fuzzy Subgroup in Context of 7 -Norm and & -
Conorm

Silambarasan [24] introduced the concept of FFSG. Building upon this pioneering work, we further
advance the field by redefining the notion of a "Fermatean fuzzy subgroup" in the context of the t-norm
function denoted as 7" and the s-conorm function denoted as .. This redefinition provides a novel
perspective and deepens our understanding of FFSG. Furthermore, we explore and present a collection
of properties associated with these redefined subgroups, shedding light on their unique characteristics
and implications within the broader context of fuzzy subgroup theory.

Definition 5. Suppose(R,*) be a group. AFFS FR; of (R,*) is FFSG in context of t-norm “7” and s-

conorm % if FR f satisfies the following conditions:

3 3 3 3
Vﬁaf Vi*Vy) =T (Vﬁf V1),V15§f Vz)) and Sﬁzf Vq*Vy) <
S (S%T{f Vi), S%E Vz)) forallvy,v, €R.
II.
3

y%ﬁf(v_1> 2 ViR, V) and S%f(v_l) < S%Tzf V) forallv €R,

where yﬁf is a membership function defined as 7/ﬁ2f: R — [01]and Sﬁ?f is a non-membership function

3 3
defined as: Sﬁf:R — [01] forallv € R and y%{f v) = (Vﬁ%f v)) and S%f v) = (Sﬁ?f v)) forallv € R.

Example 2. Let z3,#) be a group of addition modulo 3 and let FES ﬁ?f of z3,%) is F z3#)f =
{<0,[0.9,0.5] >,<1,[0.9,0.6] >, < 2,[0.9,0.6] >} Then P 23,*)f is a Fermatean fuzzy subgroupin context

(o ¢ oo o _ |3 3 _ 3 3
of t-norm .7’ and s-norm .. Where .7~ = min (7/137?)« v1), 7/@)« vz)) and . = max (‘913?/ v1), Sﬁ?f vz)).

Proposition 4. If flif is a FFSG of a group (R,*) in context of t-norm “7’, and s-conorm % then

(R,*)l ={ve (R,*) : ﬁ{f(v) = li.e yiLRf v) = 1and SiLRf v) = 1} is either empty or is a subgroup of

(Rx).
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Proof: If wvq,0,€ (R,*)1 then yi’-Rf(Ul * 02—1) > ()/%Rf vl),y%f(vz‘l)) =9 (V%{f v1), V%af vz)) =

o _ 3 1) 1 -1 :
J 1,1) =1. Therefore, ViR, (Ul * Uy ) =1 implies vy*v,"" € (R,*)l. And if vy,0,€ (R,*)l then
sgﬁf(vl +0,7) <. (sgﬁf ), sgﬁf(v;l)) = (%f o), S, 02)) =% 11)=1. Therefore, sgﬁf(vl .

02‘1) =1 implies vy * v, € (R,*)l.
Consequently, (R,*)l is a subgroup of group (R,*).

Proposition 5. Let ﬁ{f be a FFSG of a group (R,*) in context of t-norm .7~ “and s-conorm . If

y‘%ﬁf(vl * 02*1) = 1 then y%{f vp) = y%{f V), and if S%f(vl * 02—1) = 1 then S%{f vq) = S%f v,) forallv e

(R).

Proof: Consider forall vy,v, € (R,*), y%f vq) = V%Tzf((vl + 0, N0y) > T (yf’;ﬁf(vl * 02’1),7/}%1/ vz)) =

T (1,7/2~Rf vz)) = 7/%1{; V) = y%{f(vz"l). [Since FR 7 is a Fermatean fuzzy subgroup].

Again consider ;/%Ef vy) = y%ﬁf(vl(vl sv, 1)) > T (y%zf vy), y%ﬁf(vl * 021)) =9 (y}%f vl),l) =

y%{f vy) = y%{f(vz’l). [Since FR 7 is a Fermatean fuzzy subgroup].
= V%gf vy) = V%gf ).
In a similar way, we may demonstrate that S%Rf vy) = S%{f V).

Proposition 6. Let FRy be a Fermatean fuzzy set of a group (R,*) in context of t-norm “7"” and s-conorm

A If ﬁ{f(e) =1 ie., y%Rf e)=1and S%Rf e)=1 and V%zf(vl * 02_1) >
T (y%{f v1), y%{f vz)) forall vy, v, in (R,*) and S%Qf(vl * 272’1) <

S (S%Qf v1), S%%f 02)) forall vy, v, in (R,*). Then ﬁ?f is a FFSG of group (R,*) in context of t-norm ‘7’

and s-conorm %

Proof: Consider forall vy, v, € (R,*), y%f(v‘l) = y%zf(ev‘l) > (V%zf e), 7/13?»"7%] v)) =7 (1, V%Tzf v)) =
y%f(v). And similatly, y%{f(v) > )/%Qf(v‘l) so that 7?:72f v) = y%{f(v‘l). Moteover, y%v Uy *Ty) >

y%f(vl * vz"l) > (;/%{f vﬂ,y%zf (vz‘l)) =7 (V%Tzf vl),y%zf vz)). thus y%{f is a FFSG of group (R,*) in

context of t-norm ‘7 .

Likewise, we can demonstrate S%{f is a FFSG of group (R,*) in context of s-conorm “.%”. Consequently,

ﬁ{f is a FFSG of group (R,*) in context of ‘7 ’and s-conorm ‘5.



6 | Conclusion

The presence of symmetry in our environment is undeniable, yet it is not always flawlessly precise.
Symmetry often exhibits a degree of vagueness. To address this inherent vagueness, fuzzy logic has
found its application in the field of group theory. Over time, extensions of fuzzy sets have emerged,
introducing concepts such as Pythagorean and Fermatean fuzzy sets. This research paper has aimed to
redefine PFSG and FFSG by leveraging the .7 -norm and .%-conorm functions. The .7 -norm function
offers diverse definitions, including standard intersection, algebraic product, bounded difference, and
drastic intersection. Similarly, the .%’-conorm function encompasses various definitions, such as
standard union, algebraic sum, bounded sum, and drastic union. In this study, we have utilized the 7 -
norm and .%“-conorm in the existing definitions of Pythagorean and FFSG, resulting in their redefinition
within the context of these functions. Concrete examples have been provided to eclucidate these
redefined subgroups. Moreover, we have established and proven several propositions pertinent to these
newly defined subgroups.

In conclusion, the research conducted in this paper sets the stage for further promotion and
dissemination of our findings. It paves the way for future investigations and advancements in the field
of fuzzy subgroups, PFSG and Fermatean fuzzy subgroup in context of norm and conorm, fostering a
deeper understanding of symmetry in the presence of uncertainty.
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Abstract

The neutrosophic automorphisms of a neutrosophic groups G (I) , denoted by Aut(G (I)) is a neu-trosophic group under

the usual mapping composition. It is a permutation of G (I) which is also a neutrosophic homomorphism. Moreover,

suppose that X; = X(G (I)) is the neutrosophic group of inner neutrosophic auto-morphisms of a neutrosophic group G

(D) and X, the neutrosophic group of inner neutrosophic automorphisms of Xy.1. In this paper, we show that if any
neutrosophic group of the sequence G (I), X1, Xa, ... is the identity, then G (I) is nilpotent.

Keywords: Neutrosophic automorphism, Commutator subgroup, Neutrosophic subgroup, Minimal condition, Mapping
composition, Nilpotency.
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The concepts of refined neutrosophic algebraic structures and studies of refined neutrosophic groups
in particular were introduced by Agboola [1]. After the successful feat, many other neutrosophic
researchers have as well tried to establish more further studies on the refined neutrosophic algebraic
structures [2]. Further studies on refined neutrosophic rings and refined neutrosophic subrings, their
presentations and fundamentals were also worked upon.

Also, Agboola [3] has examined and as well studied the refined neutrosophic quotient groups, where
more properties of re ned neutrosophic groups were presented and it was shown that the classical
isomorphism theorems of groups do not hold in the refined neu-trosophic groups. The existence of
classical morphisms between refined neutrosophic groups G (I1; I2) and neutrosophic groups G (I)
were established. The readers can as well consult [4-7] in order to have detailed knowledge concerning
the refined neutrosophic logic, neutrosophic groups, refined neutrosophic groups and neutrosophy,
in general. Please note the following: throughout this paper, our binary operation is strictly the usual
ordinary addition (as the operation of multiplication may not be de ned due to the fact that I; does
not exist).
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Definition 1 ([3]). Suppose that (X (I1; I2); +; .) is any re ned neutro-sophic algebraic structure. Here, +
and . are ordinary addition and multiplication respectively. Then I; and I» are the split components of the
indeterminacy factor I that is I =411 +a, 1> with «; in C (the set of complex numbers); i=1; 2.

Definition 2 ([3]). Suppose that (G; *) is any group. Then, the couple (G (Is; I2); *) can be referred to as
the refined neutrosophic group. Furthermore, this group can be said to be generated by G, 11 and I and
(G (I35 I2); *) is said to be commutative if for all x; y in for all G (I1; Iz); we have x*y = y*x: otherwise, (G
(I;; I2); *) can be referred to as a non-commutative refined neutrosophic group.

Here, I has been refined as I1 and Io: note that it is possible to refine T and F as well as T, T2 and F as Fy,
F> (see [8] for some details on this. We hope to make substantial contributions and relevant considerations

in this regards as future possible studies.)

Theorem 1 ([3]). 1) every refined neutrosophic group is a semigroup but not a group, and 2) every refined

neutrosophic group contains a group.
Corollary 1 ([3]). Every refined neutrosophic group (G (Ii; I2); +) is a group.

Definition 3 ([3]). Let (G (I1; Io);*) be a refined neutrosophic group and let A (I1; I2) be a nonempty subset
of G (I1; Io): A (Ly; L) is called a refined neutrosophic sub-group of G (Ii; L) if (A (It; I);*) is a refined
neutrosophic group. It is essential that A (I1; I2) contains a proper subset which is a group. Otherwise, A
(I1; Io) will be called a pseudo refined neutrosophic subgroup of G (Iy; I2).

Definition 4 ([3]). Let H (I;; I2) be a refined neutrosophic subgroup of a refined neutrosophic group (G
(I1; In); .): define x = (a; bly; clo) in G (Ii; L).

Theorem 2 ([3]). Let (G (I; I2); +) be a refined neutrosophic group and let (G (I); +) be a neutrosophic
group such that where I =xI; +yl> with x; y in C. Let ¢: G (I1; 12)—G (I)be a mapping defined by ((a; xI1;
ylo))=(a; x +y)) for all (a; xI1; yl2) in (G (It; L) with a; x; y in G: then ¢ is a group homomorphism.

An interesting type of neutrosophic isomorphism of a neutrosophic groups G (I) would occur when the
image neutrosophic group G (I) coincides with G (I). The classical group concepts as regards to this has
been discussed by [9]. A neutrosophic isomorphism a: G (I)—G (I) of G (I) onto itself can be called a
neutrosophic automorphism of G (I). In particular, permutes the elements of G(I). The collection of all
neutrosophic automorphisms of G (I) forms a neutrosophic group under composition of maps.

If B: G 1)—G (1) is another neutrosophic automorphism, we denote the product of a and g by af. The
group of all neutrosophic automorphisms of G (I) denoted Aut (G(I)) can be called the neutrosophic
automorphism group of G(I). The unit element of G(I) is the neutrosophic identity automorphism i. This
which leaves every element of G (I) fixed i.c.,

iX = x,((a; bIl; CIZ): X e G(I)).

Definition 5. A neutrosophic group G (I) can be said to be nilpotent if it has a normal series of a finite
length n. That is,

G(I) =G0 = G1(I) = G2(I) =...=2 Gn(I) ={e},
where

GD/G,,H=AGDH/G,,@).

i+1

By this notion, every finite neutrosophic p-group G(1) is nilpotent. The nilpotence property is an hereditary
one. Thus



1. Any finite product of nilpotent neutrosophic group is nilpotent.

II. If G(J) is nilpotent of a class c, then, every neutrosophic subgroup as well as the neutrosophic quotient
group of G (I) is nilpotent and of class < c.

Definition 6. Suppose that (W (I); #) and (V (I); ®) are two neutrosophic groups. Define a neutrosophic
homomorphism from a: W (1) to V (I) to be a mapping: W (I) & V (I) such that aix#y) =a (x) a (y)
where x = (a1; bili; cilz), and y = (az; bali; calz). A neutrosophic homomorphism a which maps a
neutrosophic group W (I) on itself is called a neutrosophic endomorphism. A bijective neutrosophic
endomorphism is known as a neutrosophic automorphism.

Now, let t=(a; bly; cl) be a fixed element of a group W (I). The mapping B;: W (I)—W (I) which could
be defined by B;(x) = txt-1 for all (x1; x2li; x312) = x in W (I) is known as an inner neutrosophic
automorphism of the group W (I).

Every other neutrosophic automorphism of W (I) is called outer neutrosophic automor-phism. (The
classical group concepts on this was also discussed in [10] and [11].)

Theorem 3. A neutrosophic abelian group G (I) of order p§'ps? ... p%", where py p; ... p, are distinct
primes, is the direct product of groups Gpi(l), Gpa(l), Gps(D), ... Gpa(l) of respective orders py’, py2,
oph

n

The subgroup Gp(I) is formed of all the operations of G (I) whose orders are powers of p with the
identical operation (see also [12] for the classical group concepts.)

2 | Statement of Proof of the Main Results

We are now about to prove the main results. Already, an inner neutrosophic automorphism of a
neutrosophic group has been de ned. Now, given that X; = X(G(1)) is the neutrosophic group of inner
neutrosophic automorphisms of a group W (I). Also X, is the neutrosophic group of the inner
neutrosophic automorphisms of X1, n, an integer.

Definition 7. Suppose there exists the lower central series of a group G (I) given by:

GDH=God) 2Gad) 2 Ge@d) 2 ... Here, Go()=[Gan@d), GO, 1>0. ie, GoD=[Go®d), G OIFIG D),
G (D)]=G"(), the commutator subgroup of G (I) such that the lower central seties terminates at {e} after
a finite number of steps (i.e. Gw(I) = {e}, for some integer n). Then G (I) is said to be nilpotent.

Define uv'uv=|u; v], the commutator of u and v, in a group G (I).

g — — 1.1
And uv=vluv. Here, u= (u; uzli; usly), and v = < v, v,I;v.I )u vouv

—(ul’l; u, ' u'l )( v, v )( u; uld ; ul )(V v,I; v.I )
:uv',uvluv'l)(uvl,u I uyv I)
(u v, “1"1/” V quzIﬂU V U3V312) [u, V].

By the definition of inner neutrosophic automorphism,using induction on G (I),

X(G(I)):xl:{xjgxll(a al;al)= ginG(I)}
= {g“l geG(I )}—{gg X, gxl](a a,l;al ,)=geGandx;a;a,; a3;eG}

2717

={glg; x,Ji(a; a,l;; a,1,) =g eG(I}
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If n=2. Then X, is the neutrosophic group of the inner neutrosophic automorphisms of

Xz :{g[g; X1:| / (az; a2I1; 3312) =gG(I)}.
Hence, there exists x2 € G (I) such that

X2 :{ Xz _1 (gxl)x2 |gx1 EXl} z{(gxl)XZ |gXI€Xl}-

Following similar trends, there exists x3 € G (I) such that

X3 — {X3 _1 (gxlx2 )X?,lgxlx2 c XZ} — {gxlxzx3 |g><lx2 c X2}.
Also, there exists x4 € G (1), such that

X4 ={ X471(gxl X2X3 )X4 |gX1 X2X3 X3}= fg)(] X2X3X4 |gX1 X2X3 ex3}.
And for n =k, there exists xk € G (1), k € N, such that

X =X (™)X, 1877 € X

If the truth of the last statement is assumed, there exists xi+1 € G (I), k € N such that

x1x2 xk X

Xk+l — {X—l (gx1x2 xk)X

k+1 k+1 | k+1 } :

We have that
GOH=X,2X 2X,2X, 2X,,,2... 2X ...

Definition 8. A neutrosophic group A (I) is said to satisfy the Descending Chain Condition (DCC) for any
neutrosophic subgroups if every descending chain, Ai(I) 2 A1) 2 ie, of neutrosophic subgroups
terminates, i.e., thete exists t in N (the set of natural numbers) such that for all n > t, Aq(1) = A(I). Hence,
every non-empty subset of the neutrosophic subgroups of A (I) has a minimal element. By the original
hypothesis, let Xq+1 be the identity {e} of the sequence G (I), X1, Xa, ... .

Then, the minimal condition implies that
GO =X,2X,2X,2..2X, 22X, ,={e and X=X (G(I)).

This actually shows the nilpotence of G (I) (for more and extensive discussion regarding to the classical
group concepts, please see [10] and [13].)

3 | Applications

This findings can be fully applicable to every other nite group in general, most especially those nite groups
that are nilpotent.

4 | Conclusion

Finally, the nilpotent characteristics of every nite p-group has been observed to be highly hereditary and
so, any other neutrosophic product groups formed which have origin from nite p-group would de nitely
display neutrosopiy.
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The objective of this study is to incorporate topological space into the realm of n-Cylindrical Fuzzy Neutrosophic Sets
(n-CyENS), which are the most novel type of fuzzy neutrosophic sets. In this paper, we introduce n-Cylindrical Fuzzy
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Zadeh [1] laid the stepping stone to the field of uncertainties called fuzzy sets. The prime field of
mathematics where the concepts and ideas of fuzzy sets drew a parallel was topology. Chang [2]
enlivened the concept of fuzzy topological spaces using Zadeh’s definition. Since then the various
notions in classical topology have been extended to fuzzy topological spaces. Subsequently in the
second half of 1970 and the beginning of 1980, many authors contributed a lot to this new field. Later
Atanassov 3], [4] introduced a new set called Intuitionistic Fuzzy Set (IFS) in which the sum of both
acceptance degree and rejection degree grades does not exceed 1. Later, intuitionistic fuzzy topological
spaces via IFSs were obtained by Coker [5] in intuitionistic fuzzy topological spaces, Lee and Lee [6]
discovered the properties of continuous, open, and closed maps. Yager |7] proposed the Pythagorean
Fuzzy Set (PyEFS) as a generalisation of IFS in 2013, which ensures that the value of the square sum
of its membership degrees is less than or equal to 1. The concept of pythagorean fuzzy topological
space was introduced by Olgun et al. [8]. Cuong |9] initiated the idea of the Picture Fuzzy Set (PFS).
He utilized three indices (membership degree P (x), neutral-membership degree I (x), and non-
membership degree N (x) in PFS with the condition that is 0 =P (x) +1(x) + N (x) = 1. Obviously PFSs
is more suitable than IFS and PyFS to deal with fuzziness and vagueness. The idea of picture fuzzy
topological spaces was first initiated by Razaq et.al [10]. Later Spherical Fuzzy Sets (SFS) have been
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proposed by Kahraman and Giindogdu [11]. SFS should satisfy the condition that the squared sum of
membership degree and non-membership degree and hesitancy degree should be equal to or less than
one. Princy and Mohana [12] introduced spherical fuzzy topological spaces.

The neutrosophic set was introduced by Smarandache [13] and neutrosophic set is a generalization of
IFS. Salama and Alblowi [14] introduced the concept of neutrosophic topological spaces. They
introduced neutrosophic topological space as a generalization of intuitionistic fuzzy topological space
and a neutrosophic set besides the degree of membership, the degree of indeterminacy and the degree
of non-membership of each element. Smarandache [15] introduced the dependence degree of (also, the
independence degree of) the fuzzy components, as well as the neutrosophic components, for the first
time in 2006. Arockiarani and Jency [10] initiated the notion of fuzzy neutrosophic set as the sum of all
the three membership functions does not exceed 3. Fuzzy neutrosophic topological space and basic
operations on it was proposed by Veereswari [17]. Sarannya Kumari et al. [18] recently introduced n-
Cylindrical Fuzzy Neutrosophic Sets (n-CyFNS), which have T and F as dependent components and 1
as independent components. Except for fuzzy neutrosophic sets, the n-CyFNS is the largest extension
of fuzzy sets. In this case, the degree to which positive, neutral, and negative membership functions
satisfy the condition, 0 < BA (x) = 1 and 0 =aA n(x) +yAn(x) =1, n>1, is an integer. They also defined
the distance between two n-CyFNS, as well as their properties and basic operations.

In this paper, we introduce topological space in n-CyFNS environment. This is a new type of fuzzy
neutrosophic sets in which T and F are dependent components and I independent components. Here
we defined n-CyFN topological space, n-CyFN open sets. We also initiated n-CyFN base, n-CyFN
subbase and some related results.

2 | Preliminaries

This section covers some basic definitions and examples that will be useful in subsequent discussions.

Throughout this paper, U denotes the universe of discourse.

Definition 1 ([1]). A fuzzy set A in U is defined by membership function pa: A— [0, 1] whose
membership value pa (%) shows the degree to which x €U includes in the fuzzy set A for allx€U.

Definition 2 ([2]). A fuzzy topological space is a pair (X, T), where X is any set and T is a family of
fuzzy sets in X satistying following axioms:

I. @ XeT.
II. IfA,BET, then ANB ET.
III. If Aj €T for eachi€1, then U; A; €ET.

Definition 3 ([3]). An IFS A on U is an object of the form A = {(x, aa (%), ya (X) |x€U)} where aa (x)
€10,1] is called the degree of membership of x in A, ya (x) € [0, 1] is called the degree of non-membership

of x in A, and where aa and ya satisfy (for all x €D) (xa(x) + ya(x) < 1) IFS (U) denote the set of all the
IFSs on a universe .

Definition 4 ([13]). A neutrosophic set A on U is A =< x, Ta(x), Ia(x), Fa(x) >; x€ U, where Ta, Ia,
Fa: A= 10,1 and 0 <Ta(x) +Ia(x) + Fa®)< n3".

Definition 5 ([16]). A fuzzy neutrosophic set A on U is A = < x, Ta(x), [a(x), Fa(x) >; x€ U, where Ta,
Ia, Fa: A— [0, 1] and 0 < Ta(x) +1a(x) + Fa(x)< 3.

Definition 6 ([13]). A neutrosophic set A on U is an object of the form A = {(x, ua(x), {a (%), va(x)):
x €U}, where ua(x), {a(x), va (x) € [0,1], 0 =ua(x) + {a(x) + va (x) <3 for all x €EV. ua(x) is the degree

{17
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of truth membership, {4(x) is the degree of indeterminacy and va(x) is the degree of non-membership.

Here u4 (x) and va (x) are dependent components and {4 (X) is an independent component.

Definition 7 ([14]). A Neutrosophic Topology (NT) on a non-empty set X is a family T of neutrosophic
subsets in X satisfying the following axioms:

I. (NT1) Own,In E T.
11. (NTZ) GiNG2E T for any G1, G-€ 1.
III. (NT3) UGE T forall {Gi:iE]}gT.

In this case the pair (X, 7) is called a Neutrosophic Topological Space (NTS) and any neutrosophic set in
T is known as Neutrosophic Open Set (NOS) in X. The elements of T are called open neutrosophic sets.
A neutrosophic set F is closed if and only if it C (F) is neutrosophic open.

Definition 8 ([17]). A Fuzzy Neutrosophic Topology (FNT) a non-empty set X is a family T of fuzzy

neutrosophic subsets in X satisfying the following axioms:

I. (FNT1) On, 1y ET.
11. (FNTZ) G1NG-ET for any Gy, G ET.
III. (FNT3) UG€T for all {Gi:i€J}CT.

In this case the pair (X, 7) is called a Fuzzy Neutrosophic Topological Space (FNTS) and any fuzzy
neutrosophic set in T is known as Fuzzy Neutrosophic Open Set (FNOS) in X. The elements of T ate called

open fuzzy neutrosophic sets.

Definition 9 ([18]). An n-CyFNS A on U is an object of the form A= {(x, aa(x), Ba(X), ya(x)) | x€ D}
where aa(x) € [0, 1], called the degtree of positive membership of x in A, $a (%) € [0,1], called the degree of
neutral membership of x in A and ya (x) €0, 1], called the degree of negative membership of x in A, which
satisfies the condition, (for all x€ U) (0= pax) =1 and 0 Soa *(x) +yan(x) =1, n>1, is an integer. Here T and

F are dependent neutrosophic components and I is 100% independent.

For the convenience, (aa(x), Ba(X), ya(x))is called as n-Cylindrical Fuzzy Neutrosophic Number (n-
CyFNN) and is denoted as A= (aa, Ba, ya).

Definition 10 ([18]). (The Basic Connectives). Let Tx (U) denote the family of all n-CyFNS on U.

Definition 11. Inclusion: For every two A, BECx (U), ASB iff (for allx €U, aa(x) <as(x) and Ba(x) <fs
(x) and ya(x) 2 ys (x)) and A=B iff AEB and BEA).

Definition 12. Union: For every two A, B € Cx (V), the union of two n-CyFNSs A and B is AUB(x) = {(
s, max (o), 28(x), max (Ba(), Bs(), min (ya(x), 8(9) ) |xEV}.

Definition 13. Intersection: For every two A, B € Tx (U), the intersection of two n-CyFNSs A and B is
ANB() = {(x, min (2a(x), x5(x), min (Ba(x), Ba(x)), max (ya(x), y(x)) ) [x €V}

Definition 14. Complementation: For every A € Ty (U), the complement of an n-CyFNS A is A€ = {(x,
A(), Ba(x), 2a(x) ) [x E V.

Definition 15. Sum: For every two A, BETx (U), the sum of two n-CyFNSs A and B is A®B(x) = {(x,
(s » mas (Ba(), Ba(), min (1), YB() ) | x € U}

ap X+ ap(x)’



Definition 16. Difference: For every two A, B € Ty (U), the difference of two n-CyFNSs A and B is
ASB(x) = {(x, max (aa(X), 0s(x)), min (Ba(x), Bs(x)), % y [x€D}.

Definition 17. Product: For every two A, BE€Tx (U), the product of two n-CyFNSs A and B is A® B
(9 = 1%, (a9 08(x), Ba()-Bo(x), ya()-y8(x)) ) [xEV}.

Definition 18. Division: For every two A, BECx (U), A@B is A® B(x) = {(x, min (xa(X), a5(X)), BA(X).
Be(x), max (ya(x). ys(x)) ) [x €UV},

Results ([18]):

I. fA€Band BEC then ASC.
II. AUB=BUA& ANB=BNA.

11 (AUB) UC=AU BUC) & (ANB) NC=AN (BNC).

IV. (AUB) NC=(ANC) U BNC) & (ANB) UC=(AUC) N (BUC).

V. ANA=A&AUA=A.

VI. De Morgan’s Law for A & B ie, (AUB) ¢=A¢NBC¢ & (ANB)¢=A¢ U BC.
VIL (A®B)= (BOA).
VIIL (A® B)= (B ®A).

3 | n-Cylindrical Fuzzy Neutrosophic Topological Spaces
Definition 18. Let {A;:i € I } be an arbitrary family of n-CyFNS in U.
Then N A; = {(x, inf (xai(X)), inf (Bai(x)), sup ((yai(x)) ) |xE€D}.
UA; ={(x, sup (@ai(x), sup (Bai(x)), inf ((v4i(x) ) [x €V}
Definition 19. Oc,x ={(x, 0,0, 1) | x€V} and len={(x, 1,1, 0) | x€V}.
3.1 | n-Cylindrical Fuzzy Neutrosophic Topological Spaces

In this part, we give a definition of n-Cylindrical Fuzzy Neutrosophic Topology (n-CyFNT) and its
related properties according to Chang’s FTS.

Definition 20. An n-CyFNT on a non-empty set X is a family, Ty, of n-CyFNS in X which satisfies the
following conditions:

I. OcyN, leN € Tx.
II. Al N Az € Tx.
III. U A; € Ty, for any arbitrary family A; € 7y ,1€ L

The pair (X, tx) is called an n-cylindrical fuzzy neutrosophic topological space n-Cylindrical Fuzzy
Neutrosophic Topological Spaces (n-CyFNTS) and any n-CyFNS belongs to 7y is called an n-
Cylindrical Fuzzy Neutrosophic Open Set (n-CyFNOS) and the complement of n-CyFNOS is called n-
Cylindrical Fuzzy Neutrosophic Closed Set (n-CyFNCS) in X. Like classical topological spaces and fuzzy
topological spaces, the family {Oqn, 1epn} is called indiscrete n-CyFNTS and the topology containing all
the n-CyFN subsets is called discrete n-CyFNTSs.

Remark: Obviously any fuzzy topological space or intuitionistic fuzzy topological space or pythagorean

fuzzy topological space is an n-CyFN topological space as any subsets of the fuzzy space, intuitionistic

/-
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fuzzy space, and pythagorean fuzzy space can be viewed as n-CyFN subsets. But the converse of the above
doesn’t follow and it can be evident from the following example:

Example 1. Let X ={ p, q} and % ={ 1on , O, A, B, C, D}, where,

A={<p; 0.5, 0.5, 0.7>, <q; 0.2, 05, 0.4>}, B= {<p; 0.6, 0.5, 0.5>, <q; 0.3, 0.5, 0.9>}, C= {<p; 0.6, 0.5,
0.5>, <q; 0.3, 0.5, 0.4>}, D= {<p; 0.5, 0.5,0.7>, <q; 0.2, 0.5, 0.9>}, is cleatly an n-CyFNTS.

Definition 21. Let (X, 7x) and (X, 7x,) be n-CyFNTSs.
1. Ty is finer than Ty if Txp 2 Txy.
II. 7y, is strictly finer than Ty if Txp D Txg.
III. 7y, and Ty, are said to be comparable if it holds Ty, 2 Ty of Tx; 2 Txo-

Example 2. Consider the Example 1.

X={p, q}, 7x ={1leyn, Ocyn, A, B, C, D} and 731 = {len, Ogn, A} are two n-CyEFN topologies on X. Cleatly

we can see that Ty D Tyy.
Definition 22. Let (X, 7x) be a CyFNTS on X.

% C 1x, a sub family of Ty is called an n-CyFN base for (X, 1), if each member of Ty may be expressed

as the union of members in .%.

& C 1y, a sub family of Ty is called a n-CyFN sub-base for (X, 7x), if the family of all finite intersections
of & forms a base for (X, 7x). Here it can be said that .% generates (X, 7x).

Theorem 1. Let (X, 7x) be an n-CyFNTS and .% C 1y, be a n-cylindrical fuzzy neutrosophic base for 7.

Then 7y is the collection of all union of members of .%.
Proof: The definition of the base of an n-CyFNTS cleatly proves the theorem.

Theorem 2. Let (X, 7x) be an n-CyFNTS and % C tx. Then % is an n-cylindrical fuzzy neutrosophic
base for Ty if and only if for any x€X and any G€ Ty containing x, there exists B€ .2 such that x€BCG.

Proof: Suppose % is an n-cylindrical fuzzy neutrosophic base for 7y.
Let Ge Tx and x€G. Now G = L iBi7 Bi € %, xeG =x€ L iBi —=XE Bi for some B,‘ and let Bi =B.
That is,xeB=B; C |_;B; C G, hencex€ CB G.

Conversely suppose the given condition holds, ie, Let G € tx. For each x€G, there exists By € % such that
x€BcG.
B.C G for all x. Then,

U BXC G 1)

But from the assumption G€ 7y and, x € By for all x€G and B:C G Since G is n-CyFNOS in X, G can be
expressed as:

G CU,eg Bx where Bxe . % C 1y. 2)

From Egs. (1) and (2); G = U, Bx ; B & thus % is an n-CyFN base for ty.



Definition 23. Let (X, tx) be an n-CyFNTS and YC X. Then the collection 7y = {X;NY: X; € 75 ,i €

1} is called n-cylindrical fuzzy neutrosophic subspace topology on Y. Hence (Y, 7y) is called n-cylindrical ”’-
fuzzy neutrosophic topological subspace of (X, tx).

1 Fuzzy. Exi. Appl

Theorem 3. Let (X, 7x) be an n-CyFNTS and YC X, then 7y, an n-CyFN subspace topology on Y is
an n-CyFNTS. 146

Proof: Certainly Oy, 1¢y € Ty since 0cxNY=0c and 1NY =1,
Alsoty ={X; X, i€l}.

Hence it is closed under atbitrary n-cylindrical fuzzy neutrosophic union.

Joxiuy = Jxyuy. 3
i i

Also it is closed under finite n-cylindrical fuzzy neutrosophic intersection.

Hence the theorem follows.

Ny =()x)nY. )
i=1 i=1

Example 3. Let X be the set of all integers. Consider f € n-CyFNS such that f(x) =<1, % ,0>;x>1and
x € X=<0, —i ,1>;x<-1=<1,1,0>; x=0, then (X, 7x) is an n-CyFNTS with 73 = {1y, O, £}

Let Y denote set of all even integers ie, y = 2x €Yg(y) =<1, i 0>5y>1=<0, —11—/ , 1> y<-1=<1,1,

0>;y=0. Cleatly (Y, 7y ) is a sub space topology, Ty = {lon , O, g}

Theorem 4. If .% is an n-CyFN base for (X, 7x) and YC X, then %, ={BNY |B € .% } is an n-CyFN
base for (Y, 7y).

Proof: Let G is n-CyFN open in X and y€ GNY. Now choose B € % such that ye BCG.

Kumari R et al. |J. Fuzzy. Ext. Appl. 4(2) (2023) 141-147

Thus yeBNY CGNY. Hence %y an n-CyEN base for (Y, Ty) by Theorem 2.

Theorem 5. Let (X, tx) be a CyFNTS and (Y, 7y) be an n-cylindrical fuzzy neutrosophic topological
subspace. If CY Zis n-cylindrical fuzzy neutrosophic open in Y then Z is n-cylindrical fuzzy
neutrosophic open in X.

Proof: It is evident from the definition of n-cylindrical fuzzy topological subspace.
4 | Conclusion

Our goal with this paper is to broaden the scope of n-CyFNS to topological spaces. Here we introduce
the fundamental definitions of n-CyFNTS, n-CyFN open sets, and n-CyFN closed sets, as well as
examples. The terms n-CyFN base, n-CyFN sub base, and related theorems were also defined. This
paper is the first to investigate n-CyFNTS. This research will undoubtedly be the basis for the further
development of n-CyFNTS and their applications in various fields. Evidently, these ideas have the
potential to inspire additional research in the future.
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