Document Type : Research Paper


Department of Mechanical Engineering, Ujjain Engineering College, Ujjain, India.


The growing competition between fibre producing industry and the standards to which, it requires high quality standards. ABC company’s procurement department data shows N of number of defects in cellulose pulp sheet uncurl every month. Cellulose sheet is an important raw material in the fibre (Staple) producing industry. Quality tools such as Failure Mode and Effects Analysis (FMEA) applied to admeasure the risk of potential miscarriages. This study aims to determine the most dominant activity as the cause of rejection and losses of cellulose sheets and evince improvements that can be made by using the fuzzy FMEA model. Data collection techniques in the study are using the method of observations, interviews as well as assessment of experts to identity it. This study is based on the four criterion which dominates the defect of cellulose pulp sheet vis. Processing activities, acceptance, examination and delivery. Solicitation for overcoming these problems is presented.


Main Subjects

  1. Sengar, S., & Singh, S. B. (2012). Operational behaviour and reliability measures of a viscose staple fibre plant including deliberate failures. International journal of reliability and applications13(1), 1-17.
  2. Liker, J. K. (2004). The Toyota way: 14 management principles from the world great manufacturer. McGraw-Hill.
  3. Ebrahimipour, V., Rezaie, K., & Shokravi, S. (2010). An ontology approach to support FMEA studies. Expert systems with applications37(1), 671-677.
  4. Subriadi, A. P., & Najwa, N. F. (2020). The consistency analysis of failure mode and effect analysis (FMEA) in information technology risk assessment. Heliyon6(1), e03161.
  5. Rastayesh, S., Bahrebar, S., Blaabjerg, F., Zhou, D., Wang, H., & Dalsgaard Sørensen, J. (2020). A system engineering approach using FMEA and Bayesian network for risk analysis—a case study. Sustainability12(1), 77.
  6. Crawley, F. (2020). A guide to hazard identification methods. Elsevier.
  7. Ambekar, S. B., Edlabadkar, A., & Shrouty, V. (2013). A review: implementation of failure mode and effect analysis. International journal of engineering and innovative technology (IJEIT)2(8), 37-41.
  8. Parsana, T. S., & Patel, M. T. (2014). A case study: a process FMEA tool to enhance quality and efficiency of manufacturing industry. Bonfring International journal of industrial engineering and management science4(3), 145-152.
  9. Wan, C., Yan, X., Zhang, D., Qu, Z., & Yang, Z. (2019). An advanced fuzzy Bayesian-based FMEA approach for assessing maritime supply chain risks. Transportation research part E: logistics and transportation review125, 222-240.
  10. Li, Z., & Chen, L. (2019). A novel evidential FMEA method by integrating fuzzy belief structure and grey relational projection method. Engineering applications of artificial intelligence77, 136-147.
  11. Seiti, H., Hafezalkotob, A., Najafi, S. E., & Khalaj, M. (2018). A risk-based fuzzy evidential framework for FMEA analysis under uncertainty: an interval-valued DS approach. Journal of intelligent & fuzzy systems35(2), 1419-1430.
  12. Balaraju, J., Raj, M. G., & Murthy, C. S. (2019). Fuzzy-FMEA risk evaluation approach for LHD machine–a case study. Journal of sustainable mining18(4), 257-268.
  13. Jahangoshai Rezaee, M., Yousefi, S., Eshkevari, M., Valipour, M., & Saberi, M. (2020). Risk analysis of health, safety and environment in chemical industry integrating linguistic FMEA, fuzzy inference system and fuzzy DEA. Stochastic environmental research and risk assessment34(1), 201-218.
  14. Riaz, M., & Hashmi, M. R. (2019). Linear Diophantine fuzzy set and its applications towards multi-attribute decision-making problems. Journal of intelligent & fuzzy systems37(4), 5417-5439.
  15. Riaz, M., Hashmi, M. R., Pamucar, D., & Chu, Y. M. (2021). Spherical linear Diophantine fuzzy sets with modelling uncertainties in MCDM. Computer modelling in engineering & sciences126(3), 1125-1164.
  16. Riaz, M., Farid, H. M. A., Shakeel, H. M., Aslam, M., & Mohamed, S. H. (2021). Innovative q-rung orthopair fuzzy prioritized aggregation operators based on priority degrees with application to sustainable energy planning: a case study of Gwadar. AIMS mathematics6(11), 12795-12831.
  17. Khan, N., Yaqoob, N., Shams, M., Gaba, Y. U., & Riaz, M. (2021). Solution of linear and quadratic equations based on triangular linear Diophantine fuzzy numbers. Journal of function spaces2021.
  18. Godina, R., Silva, B. G. R., & Espadinha-Cruz, P. (2021). A DMAIC integrated fuzzy FMEA model: a case study in the Automotive Industry. Applied sciences11(8), 3726.
  19. Mangla, S. K., Luthra, S., & Jakhar, S. (2018). Benchmarking the risk assessment in green supply chain using fuzzy approach to FMEA: insights from an Indian case study. Benchmarking: an international journal, 25(8), 2660–2687.
  20. Sayyadi Tooranloo, H., Ayatollah, A. S., & Alboghobish, S. (2018). Evaluating knowledge management failure factors using intuitionistic fuzzy FMEA approach. Knowledge and information systems57(1), 183-205.
  21. Braglia, M., Frosolini, M., & Montanari, R. (2003). Fuzzy criticality assessment model for failure modes and effects analysis. International journal of quality & reliability management, 20(4), 503-524.
  22. Sharma, R. K., Kumar, D., & Kumar, P. (2005). Systematic failure mode effect analysis (FMEA) using fuzzy linguistic modelling. International journal of quality & reliability management, 22(9), 986–1004.
  23. Bowles, J. B., & Peláez, C. E. (1995). Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliability engineering & system safety50(2), 203-213.
  24. Stamatis, D. H. (2003). Failure mode and effect analysis: FMEA from theory to execution. Quality Press.
  25. Kusumadewi, S. (2002). Analisis Desain Sistem Fuzzy Menggunakan Tool Box Matlab. Yogyakarta: Graha Ilmu979-3289-02-3 Daftar Pustaka: hlm. ISBN: 979-3289-02-3
  26. Sutrisno, A., & Lee, T. J. (2011). Service reliability assessment using failure mode and effect analysis (FMEA): survey and opportunity roadmap. International journal of engineering, science and technology3(7), 25-38.
  27. Chin, K. S., Chan, A., & Yang, J. B. (2008). Development of a fuzzy FMEA based product design system. The international journal of advanced manufacturing technology36(7), 633-649.
  28. Zadeh, L. A. (1965). Information and control. Fuzzy sets8(3), 338-353.
  29. Carbone, T. A., & Tippett, D. D. (2004). Project risk management using the project risk FMEA. Engineering management journal16(4), 28-35.
  30. Puente, J., Pino, R., Priore, P., & de la Fuente, D. (2002). A decision support system for applying failure mode and effects analysis. International journal of quality & reliability management, 19(2), 137-150.