Fuzzy sets and their variants
Mehrdad Rasoulzadeh; Mohammad Fallah
Abstract
A combination of projects, assets, programs, and other components put together in a set is called a portfolio. Arranging these components helps to facilitate the efficient management of the set and subsequently leads to achieving the strategic goals. Generally, the components of the portfolio are quantifiable ...
Read More
A combination of projects, assets, programs, and other components put together in a set is called a portfolio. Arranging these components helps to facilitate the efficient management of the set and subsequently leads to achieving the strategic goals. Generally, the components of the portfolio are quantifiable and measurable which makes it possible for management to manage, prioritize, and measure different portfolios. In recent years, the portfolio in various sectors of economics, management, industry, and especially project management has been widely applied and numerous researches have been done based on mathematical models to choose the best portfolio. Among the various mathematical models, the application of data envelopment analysis models due to the unique features as well as the capability of ranking and evaluating performances has been taken by some researchers into account. In this regard, several articles have been written on selecting the best portfolio in various fields, including selecting the best stocks portfolio, selecting the best projects, portfolio of manufactured products, portfolio of patents, selecting the portfolio of assets and liabilities, etc. After presenting the Markowitz mean-variance model for portfolio optimization, these pieces of research have witnessed significant changes. Moreover, after the presentation of the fuzzy set theory by Professor Lotfizadeh, despite the ambiguities in the selection of multiple portfolios, a wide range of applications in portfolio optimization was created by combining mathematical models of portfolio optimization.
Intuitionistic fuzzy sets and their variants
Suresh Mohan; Arun Prakash Kannusamy; Vengataasalam Samiappan
Abstract
The concept of an intuitionistic fuzzy number (I F N) is of importance for representing an ill-known quantity. Ranking fuzzy numbers plays a very important role in the decision process, data analysis and applications. The concept of an intuitionistic fuzzy number (IFN) is of importance for quantifying ...
Read More
The concept of an intuitionistic fuzzy number (I F N) is of importance for representing an ill-known quantity. Ranking fuzzy numbers plays a very important role in the decision process, data analysis and applications. The concept of an intuitionistic fuzzy number (IFN) is of importance for quantifying an ill-known quantity. Ranking of intuitionistic fuzzy numbers plays a vital role in decision making and linear programming problems. Also, ranking of intuitionistic fuzzy numbers is a very difficult problem. In this paper, a new method for ranking intuitionistic fuzzy number is developed by means of magnitude for different forms of intuitionistic fuzzy numbers. In Particular ranking is done for trapezoidal intuitionistic fuzzy numbers, triangular intuitionistic fuzzy numbers, symmetric trapezoidal intuitionistic fuzzy numbers, and symmetric triangular intuitionistic fuzzy numbers. Numerical examples are illustrated for all the defined different forms of intuitionistic fuzzy numbers. Finally some comparative numerical examples are illustrated to express the advantage of the proposed method.