Document Type : Research Paper


1 Department of Mathematics, Nirmala College For Women, Coimbatore, Tamilnadu, India.

2 Department of Mathematics, Assistant Professor, Nirmala College for Women, Coimbatore, India.


Abstract Quadripartitioned single valued neutrosophic (QSVN) set is a powerful structure where we have four components Truth-T, Falsity-F, Unknown-U and Contradiction-C. And also it generalizes the concept of fuzzy, initutionstic and single valued neutrosophic set. In this paper we have proposed the concept of K-algebras on QSVN, level subset of QSVN and studied some of the results. In addition to this we have also investigated the characteristics of QSVN Ksubalgebras under homomorphism.


Main Subjects

[1]     Agboola, A. A. A., & Davvaz, B. (2015). Introduction to neutrosophic bci/bck-algebras. International journal of Mathematics and Mathematical Sciences.
[2]     Akram, M., & Dar, K. H. (2010). Generalized fuzzy K-algebras.In VDM Verlag.
[3]     Akram, M., Dar, K. H., Jun, Y. B., & Roh, E. H. (2007). Fuzzy Structures on K (G)-algebras. Southeast Asian bulletin of mathematics31(4).
[4]     Akram, M., Dar, K. H., Meng, B. L., & Shum, K. P. (2008). Interval-valued intuitionistic fuzzy ideals of K-algebras. WSEAS Trans. Math7(9), 559-565.
[5]     Akram, M., Dar, K. H., & Shum, K. P. (2011). Interval-valued (α, β)-fuzzy K-algebras. Applied soft computing11(1), 1213-1222.
[6]     Akram, M., Davvaz, B., & Feng, F. (2013). Intuitionistic fuzzy soft K-algebras. Mathematics in computer science7(3), 353-365.
[7]     Akram, M., Gulzar, H., & Smarandache, F. (2019). Neutrosophic soft topological K-algebras. Infinite Study.
[8]     Akrama, M., Gulzara, H., & Shumb, K. P. (2018). Certain notions of single-valued neutrosophic K-algebras. Infinite Study.
[9]     Atanassov, K. (2016). Intuitionistic fuzzy sets. International journal bioautomation20, 87-96.
[10] Belnap, N. D. (1977). A useful four-valued logic. In Modern uses of multiple-valued logic (pp. 5-37). Springer, Dordrecht.
[11] Dar, K. H., & Akram, M. (2004). Characterization of a K (G)-algebra by self maps. Southeast Asian bulletin of mathematics28(4).
[12] Dar, K. H., & Akram, M. (2005). On a K-Algebra Built on a Group. Southeast Asian Bulletin of Mathematics29(1), 41-49.
[13] Dar, K. H., & Akram, M. (2007). On K-homomorphisms of K-algebras. International mathematical forum, 46, 2283-2293.
[14] Jun, Y. B., & Kim, K. H. (2000). Intuitionistic fuzzy ideals of BCK-algebras. International journal of mathematics and mathematical sciences24 (12), 839-849.
[15] Mohana, K., & Mohanasundari, M. (2018). Quadripartitioned single valued neutrosophic rough sets. In Nirmala annual research congress (NARC-2018) (Vol. 3, p. 165).
[16] Mohanasundari, M., & Mohana, K. (2020). Improved correlation coefficients of quadripartitioned single-valued neutrosophic sets and interval-quadripartitioned neutrosophic sets. In Neutrosophic sets in decision analysis and operations research (pp. 331-363). IGI Global.
[17] Mohan, M., & Krishnaswamy, M. (2020). Axiomatic characterizations of quadripartitioned single valued neutrosophic rough sets. Journal of new theory, (30), 86-99.
[18] Mohanasundari, M., & Mohana, K. (2020). Quadripartitioned single valued neutrosophic dombi weighted aggregation operators for multiple attribute decision making. Neutrosophic sets and systems32(1), 9.
[19] Chatterjee, R., Majumdar, P., & Samanta, S. K. (2016). On some similarity measures and entropy on quadripartitioned single valued neutrosophic sets. Journal of intelligent & fuzzy systems30(4), 2475-2485. Smarandache, F. (1999). A unifying field in Logics: Neutrosophic Logic. In Philosophy (pp. 1-141). American Research Press.
[20] Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. Infinite study.
[21] Zadeh, L. A. (1965). Fuzzy sets. Inf. Control, 8, 338-353.