Document Type : Research Paper


1 Research Scholar, Catholicate College, Pattanamthitta, Kerala, India.

2 Principal (Professor and Dean of Research), Jyothi College of Engineering, Thrissur, Kerala, India.

3 Department of Mathematics, Providence College of Engineering, Alappuzha, Kerala, India.

4 Department of Mathematics, University of New Mexico 705 Gurley Ave. Gallup, NM 87301, USA


The objective of this study is to incorporate topological space into the realm of n-Cylindrical Fuzzy Neutrosophic Sets (n-CyFNS), which are the most novel type of fuzzy neutrosophic sets. In this paper, we introduce n-Cylindrical Fuzzy Neutrosophic Topological Spaces (n-CyFNTS), n-Cylindrical Fuzzy Neutrosophic (n-CyFN) open sets, and n-CyFN closed sets. We also defined the n-CyFN base, n-CyFN subbase, and some related theorems here.


Main Subjects

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353. DOI:10.1016/S0019-9958(65)90241-X
Chang, C. L. (1968). Fuzzy topological spaces. Journal of mathematical analysis and applications, 24(1), 182–190. DOI:10.1016/0022-247X(68)90057-7
Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20(1), 87–96. DOI:10.1016/S0165-0114(86)80034-3
Atanassov, K. T. (1989). More on intuitionistic fuzzy sets. Fuzzy sets and systems, 33(1), 37–45. DOI:10.1016/0165-0114(89)90215-7
Çoker, D. (1997). An introduction to intuitionistic fuzzy topological spaces. Fuzzy sets and systems, 88(1), 81–89. DOI:10.1016/S0165-0114(96)00076-0
Lee, S. J., & Lee, E. P. (2000). The category of intuitionistic fuzzy topological spaces. Bulletin of the korean mathematical society, 37(1), 63–76.
Yager, R. R. (2013). Pythagorean fuzzy subsets. Proceedings of the 2013 joint ifsa world congress and nafips annual meeting, ifsa/nafips 2013 (pp. 57–61). IEEE. DOI: 10.1109/IFSA-NAFIPS.2013.6608375
Olgun, M., Ünver, M., & Yardımcı, Ş. (2019). Pythagorean fuzzy topological spaces. Complex and intelligent systems, 5(2), 177–183. DOI:10.1007/s40747-019-0095-2
Cường, B. C. (2015). Picture fuzzy sets. Journal of computer science and cybernetics, 30(4), 409–420. DOI:10.15625/1813-9663/30/4/5032
Razaq, A., Garg, H., & Shuaib, U. (2022). Classification and construction of picture fuzzy topological spaces. DOI:
Kahraman, C., & Gündoğdu, F. K. (2020). Decision making with spherical fuzzy sets theory and applications (Vol. 392). Springer.
Princy, R., & Mohana, K. (2019). An introduction to spherical fuzzy topological spaces. International journal of innovative research in technology, 6(5), 110–112.
Smarandache, F. (2001). First international conference on neutrosophy, neutrosophic logic, set, probability and statistics. University of New Mexico.
Salama, A. A., & Alblowi, S. A. (2012). Neutrosophic set and neutrosophic topological spaces. IOSR journal of mathematics (iosr-jm), 3(4), 31–35. DOI:
Smarandache, F. (1999). A unifying field in logics: neutrosophic logic. In Philosophy (pp. 1–141). American Research Press.
Arockiarani, I., & Jency, J. M. (2014). More on fuzzy neutrosophic sets and fuzzy neutrosophic topological spaces. International journal of innovative research and studies, 3(5), 643–652. DOI:
Veereswari, Y. (2017). An introduction to fuzzy neutrosophic topological spaces. International journal of mathematical archive, 8(3), 1–6. DOI:
Sarannya Kumari, R., Kalayathankal, S., George, M., & Smarandache, F. (2022). n-Cylindrical fuzzy neutrosophic sets. International journal of neutrosophic science, 18(4), 355–374. DOI:10.54216/IJNS.180430