Document Type : Research Paper


Department Computer Engineering , Sirnak University, Şırnak, 73000, Turkey.


Fire is a natural disaster that poses a profound existential threat to humanity. It has traditionally been fought with conventional methods, which, unfortunately, are often fraught with limitations and potential environmental damage. Given these limitations, there is an urgent need for research into novel firefighting methods. Sound wave-based firefighting systems, an emerging solution, show promising potential in this regard.
The current study uses an extensive data set derived from numerous experimental trials of sound-wave-based firefighting. Based on this extensive dataset, we have developed a sound wave technology-based fire suppression model that includes five different fuzzy logic methods: Fuzzy Rough Set (FRS), Fuzzy K-Nearest Neighbors (FNN), Fuzzy Ownership K-Nearest Neighbors (FONN), Fuzzy-Rough K-Nearest Neighbors (FRNN), and Vaguely Quantified K-Nearest Neighbors (VQNN).
The main objective of these models is to accurately distinguish between the extinguished and non-extinguished states of a flame. This classification is based on a number of intrinsic model parameters, such as the type of fuel, the size of the flame, the decibel level, the frequency, the airflow, and the distance.
To evaluate the classification effectiveness of the models, a number of statistical methods were used, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Kappa Statistics (KP), and Mean Square Error (MSE).
Our analysis yielded promising results, with the models FRS, FNN, FONN, FRNN, and VQNN achieving classification accuracies of 93.12%, 96.66%, 95.56%, 96.35%, and 96.89%, respectively. These results confirm the high accuracy of the proposed model in classifying fire data and underline its practical applicability.


Main Subjects

[1]      Morgan, A. B., & Gilman, J. W. (2013). An overview of flame retardancy of polymeric materials: application, technology, and future directions. Fire and materials, 37(4), 259–279.
[2]      Shokouhi, M., Nasiriani, K., Khankeh, H., Fallahzadeh, H., & Khorasani-Zavareh, D. (2019). Exploring barriers and challenges in protecting residential fire-related  injuries: a qualitative study. Journal of injury & violence research, 11(1), 81–92. DOI:10.5249/jivr.v11i1.1059
[3]      Awad, Y., Kohail, M., Khalaf, M. A., & Ali, Y. A. (2022). Effect of fire extinguishing techniques on the strength of RC columns. Asian journal of civil engineering, 23(1), 113–123.
[4]      Dubocq, F., Bjurlid, F., Ydstål, D., Titaley, I. A., Reiner, E., Wang, T., … & Kärrman, A. (2020). Organic contaminants formed during fire extinguishing using different firefighting methods assessed by nontarget analysis. Environmental pollution, 265, 114834.
[5]      Liao, H., & Deng, Q. (2018). A carbon-constrained EOQ model with uncertain demand for remanufactured products. Journal of cleaner production, 199, 334–347.
[6]      Niegodajew, P., Gruszka, K., Gnatowska, R., & Šofer, M. (2018). Application of acoustic oscillations in flame extinction in a presence of obstacle. Journal of physics: conference series (Vol. 1101, p. 012023). IOP Publishing.
[7]      Sharifi, V., Kempf, A. M., & Beck, C. (2019). Large-eddy simulation of acoustic flame response to high-frequency transverse excitations. AIAA journal, 57(1), 327–340.
[8]      Taspinar, Y. S., Koklu, M., & Altin, M. (2022). Acoustic-driven airflow flame extinguishing system design and analysis of capabilities of Low frequency in different fuels. Fire technology, 58(3), 1579–1597.
[9]      Friedman, A. N., & Stoliarov, S. I. (2017). Acoustic extinction of laminar line-flames. Fire safety journal, 93, 102–113.
[10]    Shi, X., Zhang, Y., Chen, X., Zhang, Y., Ma, Q., & Lin, G. (2021). The response of an ethanol pool fire to transverse acoustic waves. Fire safety journal, 125, 103416.
[11]    Xiong, C., Liu, Y., Xu, C., & Huang, X. (2021). Acoustical extinction of flame on moving firebrand for the fire protection in wildland–urban interface. Fire technology, 57(3), 1365–1380.
[12]    O’Connor, J., Acharya, V., & Lieuwen, T. (2015). Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes. Progress in energy and combustion science, 49, 1–39.
[13]    Baillot, F., & Lespinasse, F. (2014). Response of a laminar premixed V-flame to a high-frequency transverse acoustic field. Combustion and flame, 161(5), 1247–1267.
[14]    Beisner, E., Wiggins, N. D., Yue, K. B., Rosales, M., Penny, J., Lockridge, J., … & Guerrero, L. (2015). Acoustic flame suppression mechanics in a microgravity environment. Microgravity science and technology, 27(3), 141–144.
[15]    Tanabe, M., Yano, T., & Kuwahara, T. (2008). Numerical simulation on the flame propagation in acoustic fields. Journal of the Japan society of microgravity application, 25(3), 371.
[16]    Xiong, C., Liu, Y., Xu, C., & Huang, X. (2021). Extinguishing the dripping flame by acoustic wave. Fire safety journal, 120, 103109.
[17]    Abbasi, M. Z., Wilson, P. S., & Ezekoye, O. A. (2013). Modeling acoustic propagation in a compartment fire. The journal of the acoustical society of america134(5_Supplement), 4218-4218.
[18]    Abbasi, M. Z., Ezekoye, O. A., & Wilson, P. S. (2013). Measuring the acoustic response of a compartment fire. Proceedings of meetings on acoustics (Vol. 19, No. 1). AIP Publishing.
[19]    Abbasi, M. Z., Wilson, P. S., & Ezekoye, O. A. (2020). Change in acoustic impulse response of a room due to a fire. The journal of the acoustical society of america147(6), EL546-EL551.
[20]    Sousa, M. J., Moutinho, A., & Almeida, M. (2019). Classification of potential fire outbreaks: a fuzzy modeling approach based on thermal images. Expert systems with applications, 129, 216–232.
[21]    Ye, Y., Luo, X., Dong, C., Xu, Y., & Zhang, Z. (2020). Numerical and experimental investigation of soot suppression by acoustic oscillated combustion. ACS omega, 5(37), 23866–23875.
[22]    Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A wireless sensor network deployment for rural and forest fire detection and verification. Sensors, 9(11), 8722–8747.
[23]    Wenning, B. L., Pesch, D., Timm-Giel, A., & Görg, C. (2009). Environmental monitoring aware routing: making environmental sensor networks more robust. Telecommunication systems, 43, 3-11.
[24]    Alkhatib, A. A. A. (2014). A review on forest fire detection techniques. International journal of distributed sensor networks, 10(3), 597368.
[25]    Barmpoutis, P., Papaioannou, P., Dimitropoulos, K., & Grammalidis, N. (2020). A review on early forest fire detection systems using optical remote sensing. Sensors, 20(22), 1–26.
[26]    Grover, K., Kahali, D., Verma, S., & Subramanian, B. (2019). WSN-based system for forest fire detection and mitigation. Emerging technologies for agriculture and environment: select proceedings of ITsFEW 2018 (pp. 249-260). Singapore: Springer Singapore.
[27]    Chen, S. J., Hovde, D. C., Peterson, K. A., & Marshall, A. W. (2007). Fire detection using smoke and gas sensors. Fire safety journal, 42(8), 507–515.
[28]    Mitri, G. H., & Gitas, I. Z. (2006). Fire type mapping using object-based classification of Ikonos imagery. International journal of wildland fire, 15(4), 457–462.
[29]    Gitas, I. Z., Mitri, G. H., Chuvieco, E., & Ventura, G. (2004). Object-oriented image analysis for burned area mapping using NOAA-AVHRR imagery in Creus Cape, Spain. In Innovative concepts and methods in fire danger estimationn.
[30]    Cruz, M. G., Gould, J. S., Hollis, J. J., & McCaw, W. L. (2018). A hierarchical classification of wildland fire fuels for australian vegetation types. Fire, 1(1), 13.
[31]    Dirik, M. (2023). LabVIEW-based fire extinguisher model based on acoustic airflow vibrations. Journal of soft computing and artificial intelligence, 4(1), 38–47.
[32]    Taspinar, Y. S., Koklu, M., & Altin, M. (2021). Classification of flame extinction based on acoustic oscillations using artificial intelligence methods. Case studies in thermal engineering, 28, 101561.
[33]    Koklu, M., & Taspinar, Y. S. (2021). Determining the extinguishing status of fuel flames with sound wave by machine learning methods. IEEE access, 9, 86207–86216. DOI:10.1109/ACCESS.2021.3088612
[34]    Perera, S., & Karunanayaka, K. (2022). Sentiment analysis of social media data using fuzzy-rough set classifier for the prediction of the presidential election. 2022 2nd international conference on advanced research in computing (ICARC) (pp. 188-193). IEEE. DOI: 10.1109/ICARC54489.2022.9754173
[35]    Jensen, R., & Cornelis, C. (2011). Fuzzy-rough nearest neighbour classification and prediction. Theoretical computer science, 412(42), 5871–5884.
[36]    Jensen, R., Cornelis, C., & Shen, Q. (2009). Hybrid fuzzy-rough rule induction and feature selection. 2009 IEEE international conference on fuzzy systems (pp. 1151-1156). IEEE. DOI: 10.1109/FUZZY.2009.5277058
[37]    Jensen, R., & Cornelis, C. (2008). A new approach to fuzzy-rough nearest neighbour classification. Rough sets and current trends in computing (pp. 310–319). Berlin, Heidelberg: Springer Berlin Heidelberg.
[38]    Sarkar, S., Pramanik, A., & Maiti, J. (2023). An integrated approach using rough set theory, ANFIS, and Z-number in occupational risk prediction. Engineering applications of artificial intelligence, 117, 105515.
[39]    Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353.
[40]    Mahmoudi, F., & Nasseri, S. H. (2019). A new approach to solve fully fuzzy linear programming problem. Journal of applied research on industrial engineering, 6(2), 139–149.
[41]    Das, S. K., & Mandal, T. (2017). A MOLFP method for solving linear fractional programming under fuzzy environment. International journal of research in industrial engineering, 6(3), 202–213.
[42]    Halder, P. K., Karmarker, C. L., Kundu, B., & Daniel, T. (2018). Evaluation of factors affecting the productivity of RMG in Bangladesh: a fuzzy AHP approach. International journal of research in industrial engineering, 7(1), 51–60.
[43]    Pawlak, Z., & Skowron, A. (2007). Rough sets: some extensions. Information sciences, 177(1), 28–40.
[44]    Dubois, D., & Prade, H. (1990). Rough fuzzy sets and fuzzy rough sets. International journal of general systems, 17(2–3), 191–209.
[45]    Pawlak, Z. (1996). Rough sets and data analysis. Soft computing in intelligent systems and information processing. proceedings of the 1996 Asian fuzzy systems symposium (pp. 1-6). IEEE.
[46]    Luo, Y., Lu, G., & Wu, Y. (2021). Design and analysis of blood donation model based on blockchain and knn. Proceedings of the 2021 3rd blockchain and internet of things conference (pp. 32–37). Association for Computing Machinery.
[47]    Itoo, F., Meenakshi, & Singh, S. (2021). Comparison and analysis of logistic regression, Naïve Bayes and KNN machine learning algorithms for credit card fraud detection. International journal of information technology, 13(4), 1503–1511.
[48]    Duda, R. O., & Hart, P. E. (1973). Pattern classification and scene analysis (Vol. 3, pp. 731-739). New York: Wiley.
[49]    Keller, J. M., Gray, M. R., & Givens, J. A. (1985). A fuzzy K-nearest neighbor algorithm. IEEE transactions on systems, man, and cybernetics, 15(4), 580–585. DOI:10.1109/TSMC.1985.6313426
[50]    Sarkar, M. (2007). Fuzzy-rough nearest neighbor algorithms in classification. Fuzzy sets and systems, 158(19), 2134–2152.
[51]    Sarkar, M. (2000). Fuzzy-rough nearest neighbors algorithm. Smc 2000 conference proceedings: 2000 IEEE international conference on systems, man and cybernetics.'cybernetics evolving to systems, humans, organizations, and their complex interactions'(cat. no. 0 (Vol. 5, pp. 3556-3561). IEEE. DOI: 10.1109/ICSMC.2000.886560
[52]    Cornelis, C., De Cock, M., & Radzikowska, A. M. (2007). Vaguely quantified rough sets. Rough sets, fuzzy sets, data mining and granular computing (pp. 87–94). Berlin, Heidelberg: Springer Berlin Heidelberg.
[53]    Derrac, J., Cornelis, C., García, S., & Herrera, F. (2012). Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection. Information sciences, 186(1), 73–92.
[54]    Salamó, M., & López-Sánchez, M. (2011). Rough set based approaches to feature selection for case-based reasoning classifiers. Pattern recognition letters, 32(2), 280–292.
[55]    Xu, H., Kilgour, D. M., Hipel, K. W., & McBean, E. A. (2013). Theory and application of conflict resolution with hybrid preference in colored graphs. Applied mathematical modelling, 37(3), 989–1003.
[56]    Lin, S. H., Huang, C. C., & Che, Z. X. (2015). Rule induction for hierarchical attributes using a rough set for the selection of a green fleet. Applied soft computing, 37, 456–466.
[57]    Panda, B. S., Gantayat, S. S., & Misra, A. (2015). Rough set rule-based technique for the retrieval of missing data in malaria diseases diagnosis. In Computational intelligence in medical informatics (pp. 59–71). Singapore: Springer Singapore.
[58]    Beynon, M. J., & Peel, M. J. (2001). Variable precision rough set theory and data discretisation: an application to corporate failure prediction. Omega, 29(6), 561–576.
[59]    Mekhilef, S., Saidur, R., & Kamalisarvestani, M. (2012). Effect of dust, humidity and air velocity on efficiency of photovoltaic cells. Renewable and sustainable energy reviews, 16(5), 2920–2925.
[60]    Wang, P. C., Su, C. T., Chen, K. H., & Chen, N. H. (2011). The application of rough set and Mahalanobis distance to enhance the quality of OSA diagnosis. Expert systems with applications, 38(6), 7828–7836.
[61]    Yang, M. S., & Chen, C. H. (1998). On the edited fuzzy K-nearest neighbor rule. IEEE transactions on systems, man, and cybernetics, part B (Cybernetics), 28(3), 461–466. DOI:10.1109/3477.678652
[62]    Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms. Machine learning, 6(1), 37–66.
[63]  Bian, H., & Mazlack, L. (2003). Fuzzy-rough nearest-neighbor classification approach. 22nd international conference of the north american fuzzy information processing society, NAFIPS 2003 (pp. 500-505). IEEE. DOI: 10.1109/NAFIPS.2003.1226836
[64]    Wang, X., Yang, J., Teng, X., & Peng, N. (2005). Fuzzy-rough set based nearest neighbor clustering classification algorithm. Fuzzy systems and knowledge discovery (pp. 370–373). Berlin, Heidelberg: Springer Berlin Heidelberg.
[65]    Liang-yan, S., & Li, C. (2009). A fast and scalable fuzzy-rough nearest neighbor algorithm. 2009 WRI global congress on intelligent systems (Vol. 4, pp. 311-314). IEEE. DOI: 10.1109/GCIS.2009.117
[66]    Parzen, E. (1962). On estimation of a probability density function and mode. The annals of mathematical statistics, 33(3), 1065–1076.
[67]    Panigrah, A., & Patra, M. R. (2016). Fuzzy rough classification models for network intrusion detection. Transactions on machine learning and artificial intelligence, 4(2), 7-22.
[68]    Deng, X., Liu, Q., Deng, Y., & Mahadevan, S. (2016). An improved method to construct basic probability assignment based on the confusion matrix for classification problem. Information sciences, 340341, 250–261.
[69]    Isabella, S. J., Srinivasan, S., & Suseendran, G. (2020). An efficient study of fraud detection system using Ml techniques. Intelligent computing and innovation on data science, 59. DOI:10.1007/978-981-15-3284-9_8
[70]    Awoyemi, J. O., Adetunmbi, A. O., & Oluwadare, S. A. (2017). Credit card fraud detection using machine learning techniques: a comparative analysis. 2017 international conference on computing networking and informatics (ICCNI) (pp. 1-9). IEEE. DOI: 10.1109/ICCNI.2017.8123782
[71]    Taha, A. A., & Malebary, S. J. (2020). An intelligent approach to credit card fraud detection using an optimized light gradient boosting machine. IEEE access, 8, 25579–25587.
[72]    Chicco, D., Tötsch, N., & Jurman, G. (2021). The matthews correlation coefficient (MCC) is more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class confusion matrix evaluation. BioData mining, 14(1), 1-22.
[73]    Dirik, M., & Mehmet, G. Ü. L. (2021). Dynamic optimal ANFIS parameters tuning with particle swarm optimization. Avrupa bilim VE teknoloji dergisi, (28), 1083–1092.
[74]    Viera, A. J., Garrett, J. M. (2005). Understanding interobserver agreement: the kappa statistic. Fam med, 37(5), 360–363.
[75]    Lin, T. H., & Jiang, J. R. (2021). Credit card fraud detection with autoencoder and probabilistic random forest. Mathematics, 9(21), 2683.