Document Type : Research Paper


1 Department of Mathematics, Kilis 7 Aralık University, Kilis 79000-Turkey.

2 Department of Law, Hasan Kalyoncu University, Gaziantep 27410, Turkey.

3 Department of Mathematics, Gaziantep University, Gaziantep 27310-Turkey.


Different frameworks can be chosen to solve Multi-Criteria Decision-Making (MCDM) problems emerging in business, cyber environment, economy, health care, engineering and other areas. Uncertainty, vagueness and non-rigid boundaries of the initial information are frequently noticed when dealing with the practicalities of the MCDM tasks. Single-valued neutrosophic sets are considered as the effective tool to express uncertainty of the information, however in some cases it lacks the desirable generality and flexibility. The Q-single-valued neutrosophic sets were recently proposed to deal with this situation. Then, we develop a VIKOR method based on the Q-single-valued neutrosophic sets for novel MCDM method. In the decision-making framework, the proposed method is not only a way to solve the problem of MCDM, but also contains an important mathematical idea as a different solution approach. By applying this method to the real-life problem of cyber warfare, demonstrated the flexibility, effectiveness and feasibility of the proposed VIKOR method and compare the obtained results with the results of other existing methods.


Main Subjects

  1. Zadeh, L. A. (1965). Fuzzy sets. Information and control8(3), 338-353.
  2. Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets & systems, 20(1), 87–96.
  3. Smarandache, F. (1998). Neutrosophy: neutrosophic probability, set, and logic: analytic synthesis & synthetic analysis. Info Learn Quest.
  4. Smarandache, F. (2006). Neutrosophic set-a generalization of the intuitionistic fuzzy set. 2006 IEEE international conference on granular computing(pp. 38-42). IEEE.
  5. Molodtsov, D. (1999). Soft set theory—first results. Computers & mathematics with applications37(4-5), 19-31.
  6. Alkhazaleh, S., Salleh, A. R., & Hassan, N. (2011). Soft multisets theory. Applied mathematical sciences5(72), 3561-3573.
  7. Alkhazaleh, S., & Salleh, A. R. (2011). Soft expert sets. Advances in decision sciences, 2011, 757868-1.
  8. Maji, P. K., Roy, A. R., & Biswas, R. (2001). Fuzzy Soft Sets. Journal of fuzzy mathematics, 9, 589-602.
  9. Maji, P. K. (2013). Neutrosophic soft set, Annals of fuzzy mathematics and informatics, 5(1), 157–168.
  10. Al-Quran, A., & Hassan, N. (2018). The complex neutrosophic soft expert set and its application in decision making. Journal of intelligent & fuzzy systems34(1), 569-582.
  11. Sahin, M., Alkhazaleh, S., & Ulucay, V. (2015). Neutrosophic soft expert sets. Applied mathematics6(1), 116-128.
  12. Uluçay, V., Şahin, M., & Hassan, N. (2018). Generalized neutrosophic soft expert set for multiple-criteria decision-making. Symmetry10(10), 437.
  13. Hassan, N., Uluçay, V., & Şahin, M. (2018). Q-neutrosophic soft expert set and its application in decision making. International journal of fuzzy system applications (IJFSA)7(4), 37-61.
  14. Uluçay, V. (2021). Q-neutrosophic soft graphs in operations management and communication network. Soft computing25(13), 8441-8459.
  15. Abu Qamar, M., & Hassan, N. (2018). Entropy, measures of distance and similarity of Q-neutrosophic soft sets and some applications. Entropy20(9), 672.
  16. Dalkılıç, O., & Demirtaş, N. (2023). A novel perspective for Q-neutrosophic soft relations and their application in decision making. Artificial ıntelligence review56(2), 1493-1513.
  17. Tao, H. Y., Zhao, M. L., & Ye, J. (2019). Some aggregation operators of Q-neutrosophic cubic sets for multi-attribute decision making. Journal of ıntelligent & fuzzy systems37(3), 3849-3864.
  18. Bakbak, D., & Uluçay, V. (2021). Hierarchical clustering methods in architecture based on refined Q-single-valued neutrosophic sets. Neutro algebra theory.
  19. Bakbak, D., & Uluçay, V. (2019). Multiple criteria decision making in architecture based on Q-neutrosophic soft expert multiset. In Neutrosophic triplet structures (pp. 90-107). Infinite Study.
  20. Şahin M., Olgun N., Uluçay V., Kargın A., & Smarandache, F. (2017), A new similarity measure on falsity value between single valued neutrosophic sets based on the centroid points of transformed single valued neutrosophic numbers with applications to pattern recognition, Neutrosophic sets and systems, 15, 31-48.
  21. Şahin, S., Kısaoğlu, M., & Kargın, A. (2022). In determining the level of teachers' commitment to the teaching profession using classical and fuzzy logic. In Neutrosophic algebraic structures and their applications. (pp. 183-201(. Neutrosphic Science International Association (NSIA).
  22. Şahin, S., Bozkurt, B., & Kargın, A. (2021). Comparing the social justice leadership behaviors of school administrators according to teacher perceptions using classical and fuzzy logic. In NeutroAlgebra theory (pp. 145-160). Infinite Study.
  23. Şahin, S., Kargın, A., & Yücel, M. (2021). Hausdorff measures on generalized set valued neutrosophic quadruple numbers and decision making applications for adequacy of online education. In Neutrosophic sets and systems (pp. 86-116). Infinite Study.
  24. Broumi, S., krishna Prabha, S., & Uluçay, V. (2023). Interval-valued fermatean neutrosophic shortest path problem via score function. Neutrosophic systems with applications, 11, 1-10.
  25. Kargın, A., Dayan, A., Yıldız, İ., & Kılıç, A. (2020). Neutrosophic triplet m-banach spaces (pp. 383-398). Infinite Study.
  26. Şahin, M., Kargın, A., & Yıldız, İ. (2020). Neutrosophic triplet field and neutrosophic triplet vector space based on set valued neutrosophic quadruple number. In Quadruple neutrosophic theory and applications (pp. 52-60). Infinite Study.
  27. Şahin, M., Uluçay, V., & Deli, I. (2018). Extension principle based on neutrosophic multi-fuzzy sets and algebraic operations. Journal of mathematical extension12(1), 69-90.
  28. Şahin, M., Uluçay, V., & Menekşe, M. (2018). Some new operations of (α, β, γ) interval cut set of interval valued neutrosophic sets. Journal of mathematical & fundamental sciences, 50(2),103-120.
  29. Şahin, M., Kargın, A., & Smarandache, F. (2019). Neutrosophic triplet topology. Neutrosophic triplet research, 1(4), 43-54.
  30. Bakbak, D., Ulucay, V., & Edalatpanah, S. A. (2023). Trapezoidal fuzzy multi-number preference relations based on architecture multi-criteria decision-making application. Iranian journal of fuzzy systems.1-14.
  31. Şahin, M., & Uluçay, V. (2020). Soft maximal ideals on soft normed rings. In Quadruple neutrosophic theory and applications (pp. 203-212). Infinite Study.
  32. Şahin, M., Kargın, A., & Smarandache, F. (2020). Combined classic–neutrosophic sets and numbers, double neutrosophic sets and numbers. In Quadruple neutrosophic theory and applications (PP. 254-265). Infinite Study.
  33. Şahin, M., Kargın, A., & Smarandache, F. (2021). Neutro–G modules and anti–G modules. In Neutroalgebra theory (pp. 50-71). Infinite Study.
  34. Şahin, M., Kargın, A., & Uz, M. S. (2021). Neutro-lie algebras and anti-lie algebras. In NeutroAlgebra theory (pp. 101-120). Infinite Study.
  35. Şahin, M., & Kargın, A. (2020). New similarity measure between single-valued neutrosophic sets and decision-making applications in professional proficiencies. In Neutrosophic sets in decision analysis and operations research (pp. 129-149). IGI Global.
  36. Aslan, C., Kargın, A., & Şahin, M. (2020). Neutrosophic modeling of Talcott Parsons’s action and decision-making applications for it. Symmetry, 12(7), 1166.
  37. Ihsan, M., Saeed, M., & Rahman, A. U. (2023). Optimizing hard disk selection via a fuzzy parameterized single-valued neutrosophic soft set approach. Journal of operational and strategic analytics1(2), 62-69.
  38. Bhat, S. A. (2023). An enhanced ahp group decision-making model employing neutrosophic trapezoidal numbers. Journal of operational and strategic analytics, 1(2), 81-89.
  39. Saberhoseini, S. F., Edalatpanah, S. A., & Sorourkhah, A. (2022). Choosing the best private-sector partner according to the risk factors in neutrosophic environment. Big data and computing visions, 2(2), 61-68.
  40. Mohanta, K. K., & Sharanappa, D. S. (2023). Neutrosophic data envelopment analysis: a comprehensive review and current trends. Optimality, 1(1), 10-22.
  41. Hosseinzadeh, E., & Tayyebi, J. (2023). A compromise solution for the neutrosophic multi-objective linear programming problem and its application in transportation problem. Journal of applied research on industrial engineering, 10(1), 1-10.
  42. Edalatpanah, S. A. (2019). A nonlinear approach for neutrosophic linear programming. Journal of applied research on industrial engineering, 6(4), 367-373.
  43. Bui, Q. T., Ngo, M. P., Snasel, V., Pedrycz, W., & Vo, B. (2022). The sequence of neutrosophic soft sets and a decision-making problem in medical diagnosis. International journal of fuzzy systems, 24(4), 2036-2053.
  44. Al-Sharqi, F., & Al-Quran, A. (2022). Similarity measures on interval-complex neutrosophic soft sets with applications to decision making and medical diagnosis under uncertainty. Neutrosophic sets and systems, 51, 495-515.
  45. Ali, M., Hussain, Z., & Yang, M. S. (2022). Hausdorff distance and similarity measures for single-valued neutrosophic sets with application in multi-criteria decision making. Electronics, 12(1), 1-16.
  46. Talouki, A. G., Koochari, A., & Edalatpanah, S. A. (2024). Image completion based on segmentation using neutrosophic sets. Expert systems with applications, 238, 121769.
  47. Veeramani, C., Venugopal, R., & Edalatpanah, S. A. (2022). Neutrosophic DEMATE L approach for financial ratio performance evaluation of the NASDAQ Exchange. Neutrosophic sets and systems, 51(1), 765-782.
  48. Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research156(2), 445-455.
  49. Opricovic, S., & Tzeng, G. H. (2007). Extended VIKOR method in comparison with outranking methods. European journal of operational research178(2), 514-529.
  50. Chatterjee, P., & Chakraborty, S. (2016). A comparative analysis of VIKOR method and its variants. Decision science letters, 5(4), 469-486.
  51. Wang, H., Smarandache, F., Zhang, Y., & Sunderraman, R. (2010). Single valued neutrosophic sets. In Multispace & multistructure. Neutrosophic transdisciplinarity (100 collected papers of science) (pp. 410-413). Infinite Study.
  52. Toptancı, Ş. (2023). Ergonomic performance evaluation in türkiye’s metal industry: occupational health and safety indicators through VIKOR methodology. Journal of operational and strategic analytics, 1(3), 140-146.
  53. Ariafar, S., Moosavirad, S. H., & Soltanpour, A. (2023). Improving classic hungarian algorithm considering uncertainty by applying for grey numbers. International journal of research in industrial engineering, 12(3), 321-336.
  54. Fakhrehosseini, S. F. (2019). Selecting the optimal industrial investment by multi-criteria decision-making methods with emphasis on, TOPSIS, VIKOR, and COPRAS (case study of Guilan province). International journal of research in industrial engineering, 8(4), 312-324.
  55. Hamta, N., Ehsanifar, M., Babai, A., & Biglar, A. (2021). Improving the Identification and prioritization of the most important risks of safety equipment in FMEA with a hybrid multiple criteria decision-making technique. Journal of applied research on industrial engineering, 8(Spec. Issue), 1-16.
  56. Movahedi, M., Homayounfar, M., Fadaei, M., & Soufi, M. (2022). Developing a hybrid model for comparative analysis of financial data clustering algorithms. Journal of decisions and operations research, 8(2), 507–526.
  57. Nezhad Heydari, Z., Raeiszadeh, M., Shakerian Hagigi, S., & Qayumi, M. (In Press). Selection of the best contractor by AHP and VIKOR method, a case study of an executive project in the dairy industry. Modern research in performance evaluation. (In Persian).
  58. Bera, B., Shit, P. K., Sengupta, N., Saha, S., & Bhattacharjee, S. (2022). Susceptibility of deforestation hotspots in Terai-Dooars belt of Himalayan foothills: A comparative analysis of VIKOR and TOPSIS models. Journal of King Saud university-computer and information sciences, 34(10), 8794-8806.
  59. Mishra, A. R., Chen, S. M., & Rani, P. (2022). Multiattribute decision making based on Fermatean hesitant fuzzy sets and modified VIKOR method. Information sciences, 607, 1532-1549.
  60. Li, X., Han, Z., Yazdi, M., & Chen, G. (2022). A CRITIC-VIKOR based robust approach to support risk management of subsea pipelines. Applied ocean research, 124, 103187.
  61. Khan, M. J., Ali, M. I., Kumam, P., Kumam, W., Aslam, M., & Alcantud, J. C. R. (2022). Improved generalized dissimilarity measure‐based VIKOR method for Pythagorean fuzzy sets. International journal of intelligent systems, 37(3), 1807-1845.
  62. Zavadskas, E. K., Baušys, R., Leščauskienė, I., & Omran, J. (2020). M-generalised Q-neutrosophic MULTIMOORA for decision making. Studies in ınformatics and control29(4), 389-398.
  63. Turskis, Z., Bausys, R., Smarandache, F., Kazakeviciute-Januskeviciene, G., & Zavadskas, E. K. (2022). M-generalised Q-neutrosophic extension of CoCoSo method. International journal of computers communications & control17(1), 1-12.
  64. Deveci, M., Gokasar, I., Pamucar, D., Zaidan, A. A., Wen, X., & Gupta, B. B. (2023). Evaluation of cooperative ıntelligent transportation system scenarios for resilience in transportation using type-2 neutrosophic fuzzy VIKOR. Transportation research part a: policy and practice172, 103666.
  65. Abdel-Baset, M., Chang, V., Gamal, A., & Smarandache, F. (2019). An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. Computers in ındustry106, 94-110.
  66. Mohd Kamal, N. L. A., Abdullah, L., Yee, F. M., Abdullah, I., & Vafaei, N. (2021). Single valued neutrosophic VIKOR and its application to wastewater treatment selection. Neutrosophic sets and systems47(1), 17.
  67. Luo, X., Wang, Z., Yang, L., Lu, L., & Hu, S. (2023). Sustainable supplier selection based on VIKOR with single-valued neutrosophic sets. Plos one, 18(9), e0290093.
  68. Pramanik, S., & Dalapati, S. (2023). VIKOR-based MAGDM strategy revisited in bipolar neutrosophic set environment. Journal of computational and cognitive engineering, 2(3), 220-225.
  69. Pramanik, S., Dalapati, S., Alam, S., & Roy, T. K. (2018). VIKOR based MAGDM strategy under bipolar neutrosophic set environment. Neutrosophic sets and systems19(1), 57-69.
  70. Pramanik, S., & Mallick, R. (2018). VIKOR based MAGDM strategy with trapezoidal neutrosophic numbers. Neutrosophic sets and systems22, 118-129.