Document Type : Research Paper


1 Department of Mathematics, Ganesh Dutt College, Begusarai, India.

2 Department of Mathematics, Lalit Narayan Mithila University, Darbhanga, India.


Stock portfolio problems are one of the most relevant real-world problems. In this study, we discuss the portfolio's risk amount, rate of risk-return, and expected return rate under a Fermatean fuzzy environment. A linear programming problem is used to formulate a Fermatean fuzzy portfolio. The Fermatean fuzzy portfolio is converted to a deterministic form using the score function. Lingo software is used to solve these deterministic portfolio problems. The main feature of this model is that investors can select a risk coefficient to enhance predicted returns and customize their strategies according to their circumstances. An example is offered that illustrates the effectiveness and dependability of the proposed approach.


Main Subjects

[1]     Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3), 338–353.
[2]     Atanassov, K. T. (1986). Intuitionistic fuzzy sets. Fuzzy sets and systems, 20(1), 87–96. DOI:10.1016/S0165-0114(86)80034-3
[3]     Yager, R. R. (2014). Pythagorean membership grades in multicriteria decision making. IEEE transactions on fuzzy systems, 22(4), 958–965. DOI:10.1109/TFUZZ.2013.2278989
[4]     Senapati, T., & Yager, R. R. (2020). Fermatean fuzzy sets. Journal of ambient intelligence and humanized computing, 11(2), 663–674. DOI:10.1007/s12652-019-01377-0
[5]     Abbasi Shureshjani, R., & Shakouri, B. (2021). A comment on “A novel parametric ranking method for intuitionistic fuzzy numbers.” Big data and computing visions, 1(3), 156–160.
[6]     Zeb, A., Khan, A., Fayaz, M., & Izhar, M. (2022). Aggregation operators of Pythagorean fuzzy bi-polar soft sets with application in multiple attribute decision making. Granular computing, 7(4), 931–950. DOI:10.1007/s41066-021-00307-w
[7]     Sahoo, L. (2021). A new score function based Fermatean fuzzy transportation problem. Results in control and optimization, 4, 100040.
[8]     Jing, D., Imeni, M., Edalatpanah, S. A., Alburaikan, A., & Khalifa, H. A. E. W. (2023). Optimal selection of stock portfolios using multi-criteria decision-making methods. Mathematics, 11(2), 415. DOI:10.3390/math11020415
[9]     Goldfarb, D., & Iyengar, G. (2003). Robust portfolio selection problems. Mathematics of operations research, 28(1), 1–38. DOI:10.1287/moor.
[10]   Khalifa, H. A. E. W., & Kumar, P. (2020). Solving fully neutrosophic linear programming problem with application to stock portfolio selection. Croatian operational research review, 11(2), 165–176. DOI:10.17535/CRORR.2020.0014
[11]   Liu, Y., & Qin, Z. (2012). Mean semi-absolute deviation model for uncertain portfolio optimization problem. Journal of uncertain systems, 6(4), 299–307.
[12]   Markowitz, H. M. (1952). Portfolio selection. the journal of finance, 7(1), 71–91.
[13]   Simamora, I., & Sashanti, R. (2016). Optimization of fuzzy portfolio considering stock returns and downside risk. International journal of science and research (IJSR), 5(4), 141–145. DOI:10.21275/v5i4.nov162491
[14]   Rasoulzadeh, M., Edalatpanah, S. A., Fallah, M., & Najafi, S. E. (2022). A multi-objective approach based on markowitz and dea cross-efficiency models for the intuitionistic fuzzy portfolio selection problem. Decision making: applications in management and engineering, 5(2), 241–259. DOI:10.31181/dmame0324062022e
[15]   Saberhoseini, S. F., Edalatpanah, S. A., & Sorourkhah, A. (2022). Choosing the best private-sector partner according to the risk factors in neutrosophic environment. Big data and computing visions, 2(2), 61–68. DOI:10.22105/bdcv.2022.334005.1075
[16]   Sardou, I. G., Nazari, A., Ghodsi, E., & Bagherzadeh, E. (2015). Optimal portfolio selection using multi-objective fuzzy-genetic method. International journal, 3(2), 99–103.
[17]   Wu, H., & Li, Z. (2011). Multi-period mean-variance portfolio selection with Markov regime switching and uncertain time-horizon. Journal of systems science and complexity, 24(1), 140–155. DOI:10.1007/s11424-011-9184-z
[18]   Yin, D. (2018). Application of interval valued fuzzy linear programming for stock portfolio optimization. Applied mathematics, 09(02), 101–113. DOI:10.4236/am.2018.92007
[19]   Yager, R. R. (2013). Pythagorean fuzzy subsets. Proceedings of the 2013 joint IFSA world congress and NAFIPS annual meeting, IFSA/NAFIPS 2013 (pp. 57–61). IEEE. DOI: 10.1109/IFSA-NAFIPS.2013.6608375