Document Type : Research Paper

Authors

1 Department of Computer Science and Engineering, Brainware University, Barasat, Kolkata-700125, West Bengal, India.

2 Brainware University, Barasat, Kolkata-700125, West Bengal, India.

3 School of Computer Science and Engineering, VIT-AP University, Amaravati, Andhra Pradesh, India.

Abstract

Unmanned Aerial Vehicles (UAVs) bring both potential and difficulties for emergency applications, including packet loss and changes in network topology. UAVs are also quickly taking up a sizable portion of the airspace, allowing Flying Ad-hoc NETworks (FANETs) to conduct effective ad hoc missions. Therefore, building routing protocols for FANETs is difficult due to flight restrictions and changing topology. To solve these problems, a bio-inspired route selection technique is proposed for FANET. A combined trustworthy and bioinspired-based transmission strategy is developed as a result of the growing need for dynamic and adaptable communications in FANETs. The fitness theory is used to assess direct trust and evaluate credibility and activity to estimate indirect trust. In particular, assessing UAV behavior is still a crucial problem in this field. It recommends fuzzy logic, one of the most widely utilized techniques for trusted route computing, for this purpose. Fuzzy logic can manage complicated settings by classifying nodes based on various criteria. This method combines geocaching and unicasting, anticipating the location of intermediate UAVs using 3-D estimates. This method guarantees resilience, dependability, and an extended path lifetime, improving FANET performance noticeably. Two primary features of FANETs that shorten the route lifetime must be accommodated in routing. First, the collaborative nature necessitates communication and coordination between the flying nodes, which uses a lot of energy. Second, the flying nodes' highly dynamic mobility pattern in 3D space may cause link disconnection because of their potential dispersion. Using ant colony optimization, it employs trusted leader drone selection within the cluster and safe routing among leaders. a fuzzy‐based UAV behavior analytics is presented for trust management in FANETs. Compared to existing protocols, the simulated results demonstrate improvements in delay routing overhead in FANET.

Keywords

Main Subjects

[1]   Hosseinzadeh, M., Mohammed, A. H., Alenizi, F. A., Malik, M. H., Yousefpoor, E., Yousefpoor, M. S., … Tightiz, L. (2023). A novel fuzzy trust-based secure routing scheme in flying ad hoc networks. Vehicular communications, 44, 100665. DOI:10.1016/j.vehcom.2023.100665
[2]   Wang, Z., Tian, L., Lin, L., Xie, J., Wu, W., & Tong, Y. (2023). Data collection system of iot based on the coordination of drones and unmanned surface vehicle. Journal of advanced transportation, 2023, 1–21. DOI:10.1155/2023/3426932
[3]   Abdulhae, O. T., Mandeep, J. S., & Islam, M. (2022). Cluster-based routing protocols for flying ad hoc networks (FANETs). IEEE access, 10, 32981–33004. DOI:10.1109/ACCESS.2022.3161446
[4]   Liu, Y., Xie, J., Xing, C., & Xie, S. (2023). Topology construction and topology adjustment in flying Ad hoc networks for relay transmission. Computer networks, 228, 109753. DOI:10.1016/j.comnet.2023.109753
[5]   Ye, Z., Wang, K., Chen, Y., Jiang, X., & Song, G. (2022). Multi-uav navigation for partially observable communication coverage by graph reinforcement learning. IEEE transactions on mobile computing, 22(7), 1–15. DOI:10.1109/TMC.2022.3146881
[6]   Tsao, K. Y., Girdler, T., & Vassilakis, V. G. (2022). A survey of cyber security threats and solutions for UAV communications and flying ad-hoc networks. Ad hoc networks, 133, 102894. DOI:10.1016/j.adhoc.2022.102894
[7]   Messaoudi, K., Oubbati, O. S., Rachedi, A., Lakas, A., Bendouma, T., & Chaib, N. (2023). A survey of UAV-based data collection: Challenges, solutions and future perspectives. Journal of network and computer applications, 216, 103670. DOI:10.1016/j.jnca.2023.103670
[8]   Tlili, F., Fourati, L. C., Ayed, S., & Ouni, B. (2022). Investigation on vulnerabilities, threats and attacks prohibiting UAVs charging and depleting UAVs batteries: Assessments & countermeasures. Ad hoc networks, 129, 102805. DOI:10.1016/j.adhoc.2022.102805
[9]   Singh, K., & Verma, A. K. (2020). TBCS: A trust based clustering scheme for secure communication in flying ad-hoc networks. Wireless personal communications, 114(4), 3173–3196. DOI:10.1007/s11277-020-07523-8
[10] Barka, E., Kerrache, C. A., Lagraa, N., Lakas, A., Calafate, C. T., & Cano, J. C. (2018). UNION: A trust model distinguishing intentional and unintentional misbehavior in inter-UAV communication. Journal of advanced transportation, 2018. DOI:10.1155/2018/7475357
[11] Ganesan, R., Raajini, X. M., Nayyar, A., Sanjeevikumar, P., Hossain, E., & Ertas, A. H. (2020). Bold: Bio-inspired optimized leader election for multiple drones. Sensors (switzerland), 20(11), 3134. DOI:10.3390/s20113134
[12] Du, X., Li, Y., Zhou, S., & Zhou, Y. (2022). ATS-LIA: A lightweight mutual authentication based on adaptive trust strategy in flying ad-hoc networks. Peer-to-peer networking and applications, 15(4), 1979–1993. DOI:10.1007/s12083-022-01330-7
[13] Bhardwaj, V., Kaur, N., Vashisht, S., & Jain, S. (2021). SecRIP: Secure and reliable intercluster routing protocol for efficient data transmission in flying ad hoc networks. Transactions on emerging telecommunications technologies, 32(6), e4068. DOI:10.1002/ett.4068
[14] Gankhuyag, G., Shrestha, A. P., & Yoo, S. J. (2017). Robust and reliable predictive routing strategy for flying ad-hoc networks. IEEE access, 5, 643–654. DOI:10.1109/ACCESS.2017.2647817
[15] Yu, S., Lee, J., Sutrala, A. K., Das, A. K., & Park, Y. (2023). LAKA-UAV: Lightweight authentication and key agreement scheme for cloud-assisted unmanned aerial vehicle using blockchain in flying ad-hoc networks. Computer networks, 224, 109612. DOI:10.1016/j.comnet.2023.109612
[16] Bhardwaj, V., & Kaur, N. (2021). SEEDRP: a Secure energy efficient dynamic routing protocol in fanets. Wireless personal communications, 120(2), 1251–1277. DOI:10.1007/s11277-021-08513-0
[17] Zhai, W., Liu, L., Ding, Y., Sun, S., & Gu, Y. (2023). ETD: An efficient time delay attack detection framework for UAV networks. IEEE transactions on information forensics and security, 18, 2913–2928. DOI:10.1109/TIFS.2023.3272862
[18] Namdev, M., Goyal, S., & Agarwal, R. (2021). An optimized communication scheme for energy efficient and secure flying ad-hoc network (FANET). Wireless personal communications, 120(2), 1291–1312. DOI:10.1007/s11277-021-08515-y
[19] Khan, M. A., Qureshi, I. M., & Khanzada, F. (2019). A hybrid communication scheme for efficient and low-cost deployment of future flying AD-HOC network (fanet). Drones, 3(1), 1–20. DOI:10.3390/drones3010016
[20] Lu, Y., Wen, W., Igorevich, K. K., Ren, P., Zhang, H., Duan, Y., … Zhang, P. (2023). UAV ad hoc network routing algorithms in space–air–ground integrated networks: Challenges and directions. Drones, 7(7), 448. DOI:10.3390/drones7070448
[21] Sharma, B., Obaidat, M. S., Sharma, V., & Hsiao, K. F. (2020). Routing and collision avoidance techniques for unmanned aerial vehicles: Analysis, optimal solutions, and future directions. International journal of communication systems, 33(18), e4628. DOI:10.1002/dac.4628
[22] Khan, M. F., Yau, K. L. A., Noor, R. M., & Imran, M. A. (2020). Routing schemes in FANETs: A survey. Sensors (switzerland), 20(1), 38. DOI:10.3390/s20010038
[23] Xu, M., Xie, J., Xia, Y., Liu, W., Luo, R., Hu, S., & Huang, D. (2020). Improving traditional routing protocols for flying ad hoc networks: a survey. 2020 ieee 6th international conference on computer and communications, iccc 2020 (pp. 162–166). IEEE. DOI: 10.1109/ICCC51575.2020.9345206
[24] Mukherjee, A., Dey, N., Kausar, N., Ashour, A. S., Taiar, R., & Hassanien, A. E. (2016). A disaster management specific mobility model for flying ad-hoc network. In International journal of rough sets and data analysis (Vol. 3, pp. 72–103). IGI global. DOI: 10.4018/ijrsda.2016070106
[25] Kaur, M., Verma, S., & Kavita. (2020). Flying ad-hoc network (fanet): Challenges and routing protocols. Journal of computational and theoretical nanoscience, 17(6), 2575–2581. DOI:10.1166/jctn.2020.8932
[26] Pan, H., Liu, Y., Sun, G., Fan, J., Liang, S., & Yuen, C. (2023). Joint power and 3D trajectory optimization for UAV-enabled wireless powered communication networks with obstacles. IEEE transactions on communications, 71(4), 2364–2380. DOI:10.1109/TCOMM.2023.3240697
[27] Beegum, T. R., Idris, M. Y. I., Ayub, M. N. Bin, & Shehadeh, H. A. (2023). Optimized routing of UAVs using bio-inspired algorithm in FANET: A systematic review. IEEE access, 11, 15588–15622. DOI:10.1109/ACCESS.2023.3244067
[28] Alkadi, R., & Shoufan, A. (2023). Unmanned aerial vehicles traffic management solution using crowd-sensing and blockchain. IEEE transactions on network and service management, 20(1), 201–215. DOI:10.1109/TNSM.2022.3201817
[29] Mohsan, S. A. H., Othman, N. Q. H., Li, Y., Alsharif, M. H., & Khan, M. A. (2023). Unmanned aerial vehicles (UAVs): practical aspects, applications, open challenges, security issues, and future trends. Intelligent service robotics, 16(1), 109–137. DOI:10.1007/s11370-022-00452-4
[30] Bansal, G., Naren, Chamola, V., & Sikdar, B. (2022). SHOTS: scalable secure authentication-attestation protocol using optimal trajectory in UAV swarms. IEEE transactions on vehicular technology, 71(6), 5827–5836. DOI:10.1109/TVT.2022.3162226
[31] Khayat, G., Mavromoustakis, C. X., Pitsillides, A., Batalla, J. M., Markakis, E. K., & Mastorakis, G. (2023). On the weighted cluster s-UAV scheme using latency-oriented trust. IEEE access, 11, 56310–56323. DOI:10.1109/ACCESS.2023.3282441
[32] Wei, W., Wang, J., Fang, Z., Chen, J., Ren, Y., & Dong, Y. (2023). 3U: Joint design of UAV-USV-UUV networks for cooperative target hunting. IEEE transactions on vehicular technology, 72(3), 4085–4090. DOI:10.1109/TVT.2022.3220856
[33] Bastami, H., Moradikia, M., Abdelhadi, A., Behroozi, H., Clerckx, B., & Hanzo, L. (2022). Maximizing the secrecy energy efficiency of the cooperative rate-splitting aided downlink in multi-carrier UAV networks. IEEE transactions on vehicular technology, 71(11), 11803–11819. DOI:10.1109/TVT.2022.3192298
[34] Shimaa S. Mohamed, Ahmed Abdel Monem, & Alshaimaa A. Tantawy. (2023). Neutrosophic MCDM methodology for risk assessment of autonomous underwater vehicles. Neutrosophic systems with applications, 5, 44–52. DOI:10.61356/j.nswa.2023.32
[35] Nada A.Nabeeh, Karam M. Sallam, & Ali Wagdy Mohamed. (2023). An electric vehicle analysis model for sustainable environment in devoicing nationals. Neutrosophic systems with applications, 6, 1–8. DOI:10.61356/j.nswa.2023.26
[36] Maia, A. L. M. D., & Frogeri, R. F. (2023). Optimizing business value via it governance mechanisms: An examination of SMEs in southern minas Gerais, Brazil. Journal of operational and strategic analytics, 1(3), 106–114. DOI:10.56578/josa010301
[37] Pajić, V., & Andrejić, M. (2023). Risk analysis in internal transport: An evaluation of occupational health and Safety using the fine-kinney method. Journal of operational and strategic analytics, 1(4), 147–159. DOI:10.56578/josa010401
[38] Ghanbari Talouki, A., Koochari, A., & Ahmad Edalatpanah, S. (2024). Image completion based on segmentation using neutrosophic sets. Expert systems with applications, 238, 121769. DOI:10.1016/j.eswa.2023.121769
[39] Venugopal, R., Veeramani, C., & Edalatpanah, S. A. (2024). Enhancing daily stock trading with a novel fuzzy indicator: Performance analysis using Z-number based fuzzy TOPSIS method. Results in control and optimization, 14, 100365. DOI:10.1016/j.rico.2023.100365