Document Type : Research Paper



2 Department of Mathematics, National Institute of Technology, Jamshedpur,

3 Department of Mathematics, GLA University

4 Department of Mathematics, Nandalal Ghosh B. T. College, Narayanpur, 743126, West Bengal, India.

5 Department of Mathematics


The prediction of a real-life problem like in industrial sector or health sector the outcome is impossible or sometimes it is difficult. Due to high information uncertainty and complicated influencing factors of industrial sector, the traditional data-driven prediction approaches can hardly reflect the real changes in practical situation. Fuzzy programming is a powerful prediction reasoning and risk assessment model for uncertain environment. This article mainly explores and applies a modified form of fuzzy programming; namely Fuzzy Linear Fractional Programming Problem (FLFPP) having the coefficients of the objectives and constraints as triangular fuzzy numbers (TFNs). The FLFPP is converted into an equivalent crisp multi-objective linear fractional programming problem (MOLFPP) and solved individually to associate an aspiration level to it. Then by applying fuzzy goal programming (FGP) technique the maximum degree of each membership goal is obtained by minimizing the negative deviational variables. We carry out two industrial application simulations in a hypothetical industrial scenario. Our study shows that the proposed model is practical and applicable to the uncertain practical environment to realize the prediction and the obtained results are compared with that of the existing methods.


Main Subjects