Document Type : Research Paper


1 Directorate of Material and Heritage, Federal University of Rio Grande do Norte, Natal, RN, Brazil.

2 Production Engineering Course State University of Rio de Janeiro.

3 Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte, Natal, RN, Brazil.


In this paper we extend the notion of interval representation for interval-valued Atanassov’s intuitionistic representations, in short Lx-representations, and use this notion to obtain the best possible one, of the Weighted Average (WA) and Ordered Weighted Average (OWA) operators. A main characteristic of this extension is that when applied to diagonal elements, i.e. fuzzy degrees, they provide the same results as the WA and OWA operators, respectively. Moreover, they preserve the main algebraic properties of the WA and OWA operators. A new total order for interval-valued Atanassov’s intuitionistic fuzzy degrees is also introduced in this paper which is used jointly with the best Lx-representation of the WA and OWA, in a method for multi-attribute group decision making where the assesses of the experts, in order to take in consideration uncertainty and hesitation, are interval-valued Atanassov’s intuitionistic fuzzy degrees. A characteristic of this method is that it works with interval-valued Atanassov’s intuitionistic fuzzy values in every moments, and therefore considers the uncertainty on the membership and non-membership in all steps of the decision making. We apply this method in two illustrative examples and compare our result with other methods.


Main Subjects

  1. da Cruz Asmus, T., Dimuro, G. P., Bedregal, B., Sanz, J. A., Pereira Jr, S., & Bustince, H. (2020). General interval-valued overlap functions and interval-valued overlap indices. Information sciences527, 27-50.
  2. Atanassov, K. (2016). Intuitionistic fuzzy sets. International journal bioautomation20, 1.
  3. Atanassov, K. T. (1999). Interval valued intuitionistic fuzzy sets. In Intuitionistic fuzzy sets(pp. 139-177). Physica, Heidelberg.
  4. Atanassov, K. T. (1994). Operators over interval valued intuitionistic fuzzy sets. Fuzzy sets and systems64(2), 159-174.
  5. Atanassov, K. T. (1999). Intuitionistic fuzzy sets. In Intuitionistic fuzzy sets(pp. 1-137). Physica, Heidelberg.
  6. Atanassov, K., & Rangasamy, P. (2018). Intuitionistic fuzzy sets and interval valued intuitionistic fuzzy sets. Advanced studies in contemporary mathematics28(2), 167-176.
  7. Nayagam, V. L. G., Muralikrishnan, S., & Sivaraman, G. (2011). Multi-criteria decision-making method based on interval-valued intuitionistic fuzzy sets. Expert systems with applications38(3), 1464-1467.
  8. Bedregal, B. C. (2010). On interval fuzzy negations. Fuzzy sets and systems161(17), 2290-2313.
  9. Bedregal, B., Beliakov, G., Bustince, H., Calvo, T., Mesiar, R., & Paternain, D. (2012). A class of fuzzy multisets with a fixed number of memberships. Information sciences189, 1-17.
  10. Bedregal, B. C., Dimuro, G. P., Santiago, R. H. N., & Reiser, R. H. S. (2010). On interval fuzzy S-implications. Information sciences180(8), 1373-1389.
  11. Bedregal, B., & Santiago, R. (2013). Some continuity notions for interval functions and representation. Computational and applied mathematics32(3), 435-446.
  12. Bedregal, B. C., & Santiago, R. H. N. (2013). Interval representations, Łukasiewicz implicators and Smets–Magrez axioms. Information sciences221, 192-200.
  13. Bedregal, B. R. C., & Takahashi, A. (2005, May). Interval t-norms as interval representations of t-norms. The 14th IEEE international conference on fuzzy systems, 2005. FUZZ'05.(pp. 909-914). IEEE.
  14. Bedregal, B. R., Dimuro, G. P., Reiser, R. H. S., Carvalho, J. P., Dubois, D., Kaymak, U., & da Costa Sousa, J. M. (2009). An approach to interval-valued r-implications and automorphisms. In IFSA/EUSFLAT Conf.(pp. 1-6). Lisbon, Portugal.
  15. Beliakov, G., Bustince, H., Goswami, D. P., Mukherjee, U. K., & Pal, N. R. (2011). On averaging operators for Atanassov’s intuitionistic fuzzy sets. Information sciences181(6), 1116-1124.
  16. Beliakov, G., Pradera, A., & Calvo, T. (2007). Aggregation functions: A guide for practitioners(Vol. 221). Heidelberg: Springer.
  17. Bello Lara, R., González Espinosa, S., Martín Ravelo, A., & Leyva Vázquez, M. Y. (2015). Model for static analysis in fuzzy graphs based on composite indicators of centrality. Revista cubana de ciencias informáticas9(2), 52-65. (In Spanish).
  18. Bustince Sola, H., Barrenechea Tartas, E., Pagola Barrio, M., Fernández Fernández, F. J., Xu, Z., Bedregal, B., ... & Baets, B. D. (2016). A historical account of types of fuzzy sets and their relationships. IEEE transactions on fuzzy systems, 24(1).
  19. Bustince, H., Barrenechea, E., & Pagola, M. (2008). Generation of interval‐valued fuzzy and atanassov's intuitionistic fuzzy connectives from fuzzy connectives and from Kα operators: Laws for conjunctions and disjunctions, amplitude. International journal of intelligent systems23(6), 680-714.
  20. Bustince, H., Bedregal, B., Campion, M. J., Da Silva, I., Fernandez, J., Indurain, E., ... & Santiago, R. H. N. (2020). Aggregation of individual rankings through fusion functions: criticism and optimality analysis. IEEE transactions on fuzzy systems. DOI: 1109/TFUZZ.2020.3042611
  21. Bustince, H., & Burillo, P. (1995). Correlation of interval-valued intuitionistic fuzzy sets. Fuzzy sets and systems74(2), 237-244.
  22. Bustince, H., Fernández, J., Kolesárová, A., & Mesiar, R. (2013). Generation of linear orders for intervals by means of aggregation functions. Fuzzy sets and systems220, 69-77.
  23. Bustince, H., Galar, M., Bedregal, B., Kolesarova, A., & Mesiar, R. (2013). A new approach to interval-valued Choquet integrals and the problem of ordering in interval-valued fuzzy set applications. IEEE transactions on fuzzy systems21(6), 1150-1162.
  24. Chiclana, F., Herrera-Viedma, E., Alonso, S., Alberto, R., & Pereira, M. (2008). Preferences and consistency issues in group decision making. In Fuzzy sets and their extensions: representation, aggregation and models(pp. 219-237). Springer, Berlin, Heidelberg.
  25. da Costa, C. G., Bedregal, B. C., & Neto, A. D. D. (2011). Relating De Morgan triples with Atanassov’s intuitionistic De Morgan triples via automorphisms. International journal of approximate reasoning52(4), 473-487.
  26. Deschrijver, G., Cornelis, C., & Kerre, E. E. (2004). On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE transactions on fuzzy systems12(1), 45-61.
  27. Chen, S. M., & Tan, J. M. (1994). Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy sets and systems67(2), 163-172.
  28. da Silva, I. A., Bedregal, B., da Costa, C. G., Palmeira, E., & da Rocha, M. P. (2015). Pseudo-uninorms and Atanassov’s intuitionistic pseudo-uninorms. Journal of intelligent & fuzzy systems29(1), 267-281.
  29. da Silva, I. A., Bedregal, B., Santiago, R. H., & Neto, A. D. (2012). A new method for interval-valued intuitionistic group decision making. In Segundo congresso brasileiro de sistemas fuzzy(pp. 282-294).
  30. Da Silva, I. A., Bedregal, B., & Santiago, R. H. N. (2016). On admissible total orders for interval-valued intuitionistic fuzzy membership degrees. Fuzzy information and engineering8(2), 169-182.
  31. De Miguel, L., Bustince, H., Fernández, J., Induráin, E., Kolesárová, A., & Mesiar, R. (2016). Construction of admissible linear orders for interval-valued Atanassov intuitionistic fuzzy sets with an application to decision making. Information fusion27, 189-197.
  32. De Miguel, L., Bustince, H., Pekala, B., Bentkowska, U., Da Silva, I., Bedregal, B., ... & Ochoa, G. (2016). Interval-valued Atanassov intuitionistic OWA aggregations using admissible linear orders and their application to decision making. IEEE transactions on fuzzy systems24(6), 1586-1597.
  33. Deschrijver, G., & Kerre, E. E. (2003). On the relationship between some extensions of fuzzy set theory. Fuzzy sets and systems133(2), 227-235.
  34. Dimuro, G. P., Bedregal, B. C., Santiago, R. H. N., & Reiser, R. H. S. (2011). Interval additive generators of interval t-norms and interval t-conorms. Information sciences181(18), 3898-3916.
  35. Goguen, J. A. (1967). L-fuzzy sets. Journal of mathematical analysis and applications18(1), 145-174.
  36. Grattan‐Guinness, I. (1976). Fuzzy membership mapped onto intervals and many‐valued quantities. Mathematical logic quarterly22(1), 149-160.
  37. Hickey, T., Ju, Q., & Van Emden, M. H. (2001). Interval arithmetic: From principles to implementation. Journal of the ACM (JACM)48(5), 1038-1068.
  38. Hong, D. H., & Choi, C. H. (2000). Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy sets and systems114(1), 103-113.
  39. Kim, S. H., & Han, C. H. (1999). An interactive procedure for multi-attribute group decision making with incomplete information. Computers & operations research26(8), 755-772.
  40. Jahn, K. U. (1975). Intervall‐wertige Mengen. Mathematische nachrichten68(1), 115-132.
  41. Lee, W. (2009, August). A novel method for ranking interval-valued intuitionistic fuzzy numbers and its application to decision making. 2009 international conference on intelligent human-machine systems and cybernetics(Vol. 2, pp. 282-285). IEEE.
  42. Mesiar, R., & Komorníková, M. (2010). Aggregation functions on bounded posets. In 35 years of fuzzy set theory(pp. 3-17). Springer, Berlin, Heidelberg.
  43. Milfont, T., Mezzomo, I., Bedregal, B., Mansilla, E., & Bustince, H. (2021). Aggregation functions on n-dimensional ordered vectors equipped with an admissible order and an application in multi-criteria group decision-making.
  44. Mitchell, H. B. (2004). An intuitionistic OWA operator. International journal of uncertainty, fuzziness and knowledge-based systems12(06), 843-860.
  45. Moore, R. E. (1979). Methods and applications of interval analysis. Society for Industrial and Applied Mathematics.
  46. Paternain, D., Jurio, A., Barrenechea, E., Bustince, H., Bedregal, B., & Szmidt, E. (2012). An alternative to fuzzy methods in decision-making problems. Expert systems with applications39(9), 7729-7735.
  47. Pedrycz, W., Ekel, P., & Parreiras, R. (2011). Fuzzy multicriteria decision-making: models, methods and applications. John Wiley & Sons.
  48. Reiser, R. H. S., & Bedregal, B. (2014). K-operators: An approach to the generation of interval-valued fuzzy implications from fuzzy implications and vice versa. Information sciences257, 286-300.
  49. Reiser, R. H. S., Bedregal, B. C., & Dos Reis, G. A. A. (2014). Interval-valued fuzzy coimplications and related dual interval-valued conjugate functions. Journal of computer and system sciences80(2), 410-425.
  50. Reiser, R. H. S., Bedregal, B., & Visintin, L. (2013). Index, expressions and properties of interval-valued intuitionistic fuzzy implications. TEMA (São Carlos)14, 193-208.
  51. Reiser, R. H. S., & Bedregal, B. (2017). Correlation in interval-valued Atanassov’s intuitionistic fuzzy sets—conjugate and negation operators. International journal of uncertainty, fuzziness and knowledge-based systems25(05), 787-819.
  52. Sambuc, R. (1975) Φ-fuzzy functions: Application to diagnostic aid in thyroid pathology (Phd Thesis, University of Marseille, France). (In French).
  53. Santana, F., Bedregal, B., Viana, P., & Bustince, H. (2020). On admissible orders over closed subintervals of [0, 1]. Fuzzy sets and systems399, 44-54.
  54. Santiago, R. H. N., Bedregal, B. R. C., & Acióly, B. M. (2006). Formal aspects of correctness and optimality of interval computations. Formal aspects of computing18(2), 231-243.
  55. Santiago, R., Bedregal, B., Dimuro, G. P., Fernandez, J., Bustince, H., & Fardoun, H. M. (2021). Abstract homogeneous functions and Consistently influenced/disturbed multi-expert decision making. IEEE Transactions on fuzzy systems. DOI:1109/TFUZZ.2021.3117438
  56. Shang, Y. G., Yuan, X. H., & Lee, E. S. (2010). The n-dimensional fuzzy sets and Zadeh fuzzy sets based on the finite valued fuzzy sets. Computers & mathematics with applications60(3), 442-463.
  57. Sirbiladze, G. (2021). New view of fuzzy aggregations. part I: general information structure for decision-making models. Journal of fuzzy extension and applications, 2(2), 130-143. DOI: 22105/jfea.2021.275084.1080
  58. Tan, C. (2011). A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS. Expert systems with applications38(4), 3023-3033.
  59. Tan, C., & Chen, X. (2013). Interval-valued intuitionistic fuzzy multicriteria group decision making based on VIKOR and Choquet integral. Journal of applied mathematics.
  60. Tan, C. Y., Deng, H., & Cao, Y. (2010). A multi-criteria group decision making procedure using interval-valued intuitionistic fuzzy sets. Journal of computational information systems6(3), 855-863.
  61. Tizhoosh, H. R. (2008). Interval-valued versus intuitionistic fuzzy sets: Isomorphism versus semantics. Pattern recognition41(5), 1812-1813.
  62. Wan, S., & Dong, J. (2014). A possibility degree method for interval-valued intuitionistic fuzzy multi-attribute group decision making. Journal of computer and system sciences80(1), 237-256.
  63. Wan, S., & Dong, J. (2020). Decision making theories and methods based on interval-valued intuitionistic fuzzy sets. Springer Nature, Singapore Pte Ltd.
  64. Wang, Z., Li, K. W., & Wang, W. (2009). An approach to multiattribute decision making with interval-valued intuitionistic fuzzy assessments and incomplete weights. Information sciences179(17), 3026-3040.
  65. Wei, G. (2010). Some induced geometric aggregation operators with intuitionistic fuzzy information and their application to group decision making. Applied soft computing10(2), 423-431.
  66. Ze-Shui, X. (2007). Methods for aggregating interval-valued intuitionistic fuzzy information and their application to decision making [J]. Control and decision2, 019.
  67. Xu, Z. S., & Jian, C. H. E. N. (2007). Approach to group decision making based on interval-valued intuitionistic judgment matrices. Systems engineering-theory & practice27(4), 126-133.
  68. Xu, Z., & Yager, R. R. (2006). Some geometric aggregation operators based on intuitionistic fuzzy sets. International journal of general systems35(4), 417-433.
  69. YagerR, P. (1988). On ordered weighted averaging operators in multicritefia decision making. IEEE transactions on systems, man and cybernetics18, 183-190.
  70. Yager, R. R. (2009). OWA aggregation of intuitionistic fuzzy sets. International journal of general systems38(6), 617-641.
  71. Zadeh, L. A. (1965). Fuzzy sets. Information and control8(3), 338-353.
  72. Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information sciences8(3), 199-249.